Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
Connected undirected weighted graph without self-loops and multiple edges is given. Graph contains n vertices and m edges.
For each edge (u, v) find the minimal possible weight of the spanning tree that contains the edge (u, v).
The weight of the spanning tree is the sum of weights of all edges included in spanning tree.
First line contains two integers n and m (1 ≤ n ≤ 2·105, n - 1 ≤ m ≤ 2·105) — the number of vertices and edges in graph.
Each of the next m lines contains three integers ui, vi, wi (1 ≤ ui, vi ≤ n, ui ≠ vi, 1 ≤ wi ≤ 109) — the endpoints of the i-th edge and its weight.
Print m lines. i-th line should contain the minimal possible weight of the spanning tree that contains i-th edge.
The edges are numbered from 1 to m in order of their appearing in input.
5 7
1 2 3
1 3 1
1 4 5
2 3 2
2 5 3
3 4 2
4 5 4
9
8
11
8
8
8
9
题意:
给你n个点,m条边的带权无向图
问你分别包含第i条边的 MST 权值 是多少
题解:
先求一遍MST,这样知道了 总权值, 和某些 构成 MST 的 边
假设 第 i 条边 在 当前求的 MST 的 边中
那么 答案就是 这个 weight吧
假如 第 i 条边 不在 当前 求的 MST 中,那么我们就加入在这个 MST的图中,会发现 无论 如何都构成 环
那么 答案 就是 ,在这个环上 删除一条 除了加入的边 的权 值 最大的 那一条边
问题就变成了 去MST 中 任意两点 的 边权 最大值
这个问题的解法有很多
我写的是LCA ,复杂度是logn * m
还可以 直接 暴力 一点的写法
#include<bits/stdc++.h>
using namespace std; #pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair typedef long long LL;
const long long INF = 1e18;
const double Pi = acos(-1.0);
const int N = 2e5+, M = 5e5+, inf = 2e9, mod = 1e9+; int fa[N],pa[N][],mx[N][],deep[N],vis[N],n,m;
LL weight;
LL ans[N];
vector<pii> G[N];
struct edge{
int u,v,w,id;
bool operator < (const edge &b) const {
return w<b.w;
}
}e[M];
int finds(int x) {return x == fa[x] ? x:fa[x]=finds(fa[x]);} void dfs(int u,int f,int c) {
pa[u][]=f, mx[u][]=c;
for(int i = ; i < G[u].size(); ++i) {
int to = G[u][i].first;
if(to == f) continue;
deep[to] = deep[u] + ;
dfs(to,u,G[u][i].second);
}
}
void solve() {
for(int i = ; i <= n; ++i) fa[i] = i;
sort(e+,e+m+);
for(int i = ; i <= m; ++i) {
int fx = finds(e[i].u);
int fy = finds(e[i].v);
if(fx == fy) continue;
G[e[i].u].push_back(MP(e[i].v,e[i].w));
G[e[i].v].push_back(MP(e[i].u,e[i].w));
fa[fx] = fy;
vis[i] = ;
weight += e[i].w;
}
dfs(,-,-);
for(int k = ; k < ; ++k) {
for(int i = ; i <= n; ++i) {
if(pa[i][k-] == -)
pa[i][k] = -, mx[i][k] = -;
else
pa[i][k] = pa[pa[i][k-]][k-],
mx[i][k] = max(mx[i][k-],mx[pa[i][k-]][k-]);
}
}
}
int Lca(int u,int v) {
if(deep[u] > deep[v]) swap(u,v);
int ret = ;
for(int k = ; k < ; ++k)
if((deep[v] - deep[u])>>k & )
ret = max(ret, mx[v][k]), v = pa[v][k];
if(u == v) return ret;
for(int k = ; k >= ; --k)
if(pa[u][k] != pa[v][k]) {
ret = max(ret, mx[u][k]), u = pa[u][k];
ret = max(ret, mx[v][k]), v = pa[v][k];
}
return max(ret, max(ret, max(mx[u][],mx[v][])));
}
int main() {
scanf("%d%d",&n,&m);
for(int i = ; i <= m; ++i) {
scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].w);
e[i].id = i;
}
solve();
for(int i = ; i <= m; ++i) {
if(vis[i]) ans[e[i].id] = weight;
else {
ans[e[i].id] = weight - Lca(e[i].u,e[i].v) + e[i].w;
}
}
for(int i = ; i <= m; ++i) printf("%I64d\n",ans[i]);
}
好暴力的写法 %
#include<bits/stdc++.h>
using namespace std; #define PB push_back
#define MP make_pair
#define SZ(v) ((int)(v).size())
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define REP(i,n) FOR(i,0,n)
#define FORE(i,a,b) for(int i=(a);i<=(b);++i)
#define REPE(i,n) FORE(i,0,n)
#define FORSZ(i,a,v) FOR(i,a,SZ(v))
#define REPSZ(i,v) REP(i,SZ(v))
typedef long long ll;
typedef unsigned long long ull;
ll gcd(ll a,ll b) { return b==?a:gcd(b,a%b); } const int MAXN=;
const int MAXM=;
typedef struct E { int a,b,c,idx; } E;
bool operator<(const E &p,const E &q) { return p.c<q.c; } int n,m;
E e[MAXM]; int par[MAXN],sz[MAXN],val[MAXN]; ll ret;
int extra[MAXM];
int process(int a,int b,int c) {
int mx=;
while((par[a]!=a||par[b]!=b)&&a!=b) { if(par[b]==b||par[a]!=a&&sz[a]<=sz[b]) mx=max(mx,val[a]),a=par[a]; else mx=max(mx,val[b]),b=par[b]; }
if(a==b) return c-mx;
if(sz[a]<sz[b]) swap(a,b);
sz[a]+=sz[b]; par[b]=a; val[b]=c; ret+=c;
return ;
} void run() {
scanf("%d%d",&n,&m);
REP(i,m) scanf("%d%d%d",&e[i].a,&e[i].b,&e[i].c),--e[i].a,--e[i].b,e[i].idx=i;
sort(e,e+m); ret=; REP(i,n) par[i]=i,sz[i]=;
REP(i,m) extra[e[i].idx]=process(e[i].a,e[i].b,e[i].c);
REP(i,m) printf("%I64d\n",ret+extra[i]);
} int main() {
run();
return ;
}
Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST的更多相关文章
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树+树链剖分+线段树
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge (最小生成树+树链剖分)
题目链接:http://codeforces.com/contest/609/problem/E 给你n个点,m条边. 问枚举每条边,问你加这条边的前提下组成生成树的权值最小的树的权值和是多少. 先求 ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge 树上倍增
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- CF Educational Codeforces Round 3 E. Minimum spanning tree for each edge 最小生成树变种
题目链接:http://codeforces.com/problemset/problem/609/E 大致就是有一棵树,对于每一条边,询问包含这条边,最小的一个生成树的权值. 做法就是先求一次最小生 ...
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
- codeforces 609E Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式)
Count on a tree SPOJ 10628 主席树+LCA(树链剖分实现)(两种存图方式) 题外话,这是我第40篇随笔,纪念一下.<( ̄︶ ̄)↗[GO!] 题意 是说有棵树,每个节点上 ...
随机推荐
- 在Debian上用Bind 配置DNS服务器
1 什么是DNS 初学者可能不理解DNS到底是什么,干什么用.我是在1998年大学毕业时才听说这个词的.那时我在聊天室碰到潍坊信息港的一个网管,我恬不知耻地说我也是个网管,他说也维护DNS吗?我说,D ...
- ATS(App Transport Security)对HTTP协议屏蔽引起的问题
一.问题描述 在学习网络处理的过程,发现代码都没错,运行时会收到如下错误提示: App Transport Security has blocked a cleartext HTTP (http:// ...
- c#操作时间
本年还剩下多少天 private string GetEndTime() { DateTime dt = DateTime.Now; DateTime startYear = DateTime.Now ...
- C# 对象深度拷贝
转载 using System; using System.Collections.Generic; using System.Linq; using System.Reflection; using ...
- andriod一次退出所有的Activity
自己实现了一个Activity管理,可以实现一次退出所有的Activity.在Activity启动的时候,将调用里面的put方法,将Activity对象加入进来.在要退出某个activity的时候,将 ...
- 【linux】学习1
郁闷啊 好多东西要学 下面大概就是鸟哥那本书的第五章内容吧 linux命令: Ctrl + Alt + F1 ~ F6 : 切换终端 ls -al ~ :显示主文件夹下的所有隐藏文件 date: ...
- java判断身份证有效性
import java.util.Calendar; public class CertNoUtil { public static boolean vIDNumByRegex(String idNu ...
- Hibernate查询语句
1 hql查询 Hibernate的查询语句,hiberante提供的面向对象的查询语言,和sql语句的语法的相似.而且严格区分大小写. 1.1 from字句 /** * hql: from 字句 * ...
- Qt 获取Mac地址
QList<QNetworkInterface> list = QNetworkInterface::allInterfaces(); foreach(QNetworkInterface ...
- sqlplus 设置
set heading offset line 40001.设置页面显示总行数show pagesize; //首先查看目前的pagesize,默认是14set pagesize 100; //将pa ...