Description

给定一个$l\;\times\;w$的矩形,和$n$个圆,求最小的$k$使得每个圆的半径$\;\times\;k$后,能覆盖整个矩形.

Input

第一行一个整数$T$,表示数据组数.

以下$T$组数据,每组数据第一行三个整数$N,L,W$,表示圆个数和矩形大小.

接下来$N$行,每行三个正整数$x[i],y[i],R[i]$表示一个圆心的坐标和原始半径.

Output

对于每组数据,输出一个实数$K$,保留$3$位小数.

Sample Input

1
1 2 2
1 1 1

Sample Output

1.414

HINT

$t\;\leq\;10,n\;\leq\;50,x[i],y[i],R[i]\;\leq\;1000$

Solution

二分$k$,分治矩形判断当前$k$是否可行:

$1.$如果当前矩形的四个顶点在同一圆内,可行;

$2.$如果当前矩形有一个顶点不在圆内,不可行;

$3.$如果当前矩形的四个顶点不在同一圆内,分成$4$部分继续判断.

#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 55
#define K 1e-7
#define eps 1e-13
using namespace std;
int n,t;
double a[N],x[N],y[N],r[N],l,w,lef,rig,mid;
inline double sqr(double x){
return x*x;
}
inline bool in(int i,double k,double n,double m){
double d=sqr(x[i]-n)+sqr(y[i]-m);
return d<=sqr(r[i])+eps;
}
inline bool chk(double k,double n1,double n2,double m1,double m2){
bool f1=0,f2=0,f3=0,f4=0;
if(fabs(n1-n2)<eps&&fabs(m1-m2)<eps) return true;
for(int i=1,l1,l2,l3,l4;i<=n;++i){
l1=in(i,k,n1,m1);l2=in(i,k,n1,m2);
l3=in(i,k,n2,m1);l4=in(i,k,n2,m2);
if(l1&&l2&&l3&&l4) return true;
f1|=l1;f2|=l2;f3|=l3;f4|=l4;
}
if(!f1||!f2||!f3||!f4) return false;
double mm=(m1+m2)*0.5,nn=(n1+n2)*0.5;
return chk(k,n1,nn,m1,mm)&&chk(k,n1,nn,mm,m2)\
&&chk(k,nn,n2,m1,mm)&&chk(k,nn,n2,mm,m2);
}
inline void Aireen(){
scanf("%d",&t);
while(t--){
scanf("%d%lf%lf",&n,&l,&w);
for(int i=1;i<=n;++i)
scanf("%lf%lf%lf",&x[i],&y[i],&a[i]);
lef=0.0;rig=l+w;
while(lef+K<rig){
mid=(lef+rig)*0.5;
for(int i=1;i<=n;++i)
r[i]=a[i]*mid;
if(chk(mid,0.0,l,0.0,w)) rig=mid;
else lef=mid+K;
}
printf("%.3lf\n",lef);
}
}
int main(){
freopen("cover.in","r",stdin);
freopen("cover.out","w",stdout);
Aireen();
fclose(stdin);
fclose(stdout);
return 0;
}

[bzoj2517]矩形覆盖的更多相关文章

  1. 【OpenJudge 1793】矩形覆盖

    http://noi.openjudge.cn/ch0405/1793/ 好虐的一道题啊. 看数据范围,一眼状压,然后调了好长时间QwQ 很容易想到覆盖的点数作为状态,我用状态i表示至少覆盖状态i表示 ...

  2. NOIP2002矩形覆盖[几何DFS]

    题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...

  3. bzoj 1185 旋转卡壳 最小矩形覆盖

    题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...

  4. [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖

    跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...

  5. NOIP2002 矩形覆盖

    题四 矩形覆盖(存盘名NOIPG4) [问题描述]: 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2), ...

  6. UVA-11983-Weird Advertisement(线段树+扫描线)[求矩形覆盖K次以上的面积]

    题意: 求矩形覆盖K次以上的面积 分析: k很小,可以开K颗线段树,用sum[rt][i]来保存覆盖i次的区间和,K次以上全算K次 // File Name: 11983.cpp // Author: ...

  7. 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1945  Solve ...

  8. BZOJ:1185: [HNOI2007]最小矩形覆盖

    1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...

  9. BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]

    1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec  Memory Limit: 162 MBSec  Special JudgeSubmit: 1435  Solve ...

随机推荐

  1. 小Y的棋盘问题 题解

    有一个n*m的棋盘,上面有一些棋子,每行每列最多只会有一个棋子,不会有两个棋子八连通.问随机一个空格子作为起点,再随机地选择一个空格子作为终点,求问不经过任意棋子最短路的期望长度是多少.多组,n,m& ...

  2. 今天看了shell大神的写的一个统计脚本

    通过nginx日志统计接口耗时排行 grep '/bigbox?' access_log | awk '{print $7"&process="$NF}'| sed -r ...

  3. header

    本文分享几个php header函数的例子,有需要的朋友参考学习下. 转自:http://www.jbxue.com/article/php_header_x5hV63c.html 1,可以使用hed ...

  4. WKWebView捕获HTML弹出的Alert和Confirm

    之前用WebView装载一个网页时,弹出Alert时会显示网址,由于不想把网址暴露给用户这样显示就不是很友好了.UIWebView文档内没有找到可以捕获这类信息的API.GOOGLE了下发现了WKWe ...

  5. quartz.net 项目无法加载的问题

    最近尝试试用一下quartz.net 做任务调度用. 下载了源代码后打开解决方案发现项目无法加载.错误如下 未找到导入的项目“C:\Users\****\Desktop\Quartz.NET-2.1. ...

  6. ORACLE查出表所有的触发器及触发器详细信息

    ORACLE查出表所有的触发器及触发器详细信息 一.查all_triggers表得到trigger_name Sql代码 select trigger_name from all_triggers w ...

  7. PRML读书会第五章 Neural Networks(神经网络、BP误差后向传播链式求导法则、正则化、卷积网络)

    主讲人 网神 (新浪微博:@豆角茄子麻酱凉面) 网神(66707180) 18:55:06 那我们开始了啊,前面第3,4章讲了回归和分类问题,他们应用的主要限制是维度灾难问题.今天的第5章神经网络的内 ...

  8. 【分布式协调】之理解paxos

    感叹一下 不得不说近几年国内软件行业发生了巨大的变化,之前几乎所有应用都围绕桌面展开,而近几年很多让人神魂颠倒的关键词一个接一个的映入眼帘:web2.0.移动应用.云计算.大数据.互联网的浪潮一波接着 ...

  9. DevExpress中设置PanelControl背景的方法

    首先当然是设置BackColor的颜色,但是设置完之后往往是没有反映的,这就Dev的好处带来的不好,然后我们需要自己定义两个属性 1.设置LookAndFeel下的style为Flat或UtralFl ...

  10. react实现的tab切换组件

    我有点想要吐槽,因为用原生的js实现起来挺简单的一个小东西,改用react来写却花了我不少时间,也许react的写法只有在复杂的web应用中才能体现出它的优势吧!不过吐槽归吐槽,对react这种优雅的 ...