[bzoj2517]矩形覆盖
Description
给定一个$l\;\times\;w$的矩形,和$n$个圆,求最小的$k$使得每个圆的半径$\;\times\;k$后,能覆盖整个矩形.
Input
第一行一个整数$T$,表示数据组数.
以下$T$组数据,每组数据第一行三个整数$N,L,W$,表示圆个数和矩形大小.
接下来$N$行,每行三个正整数$x[i],y[i],R[i]$表示一个圆心的坐标和原始半径.
Output
对于每组数据,输出一个实数$K$,保留$3$位小数.
Sample Input
1
1 2 2
1 1 1
Sample Output
1.414
HINT
$t\;\leq\;10,n\;\leq\;50,x[i],y[i],R[i]\;\leq\;1000$
Solution
二分$k$,分治矩形判断当前$k$是否可行:
$1.$如果当前矩形的四个顶点在同一圆内,可行;
$2.$如果当前矩形有一个顶点不在圆内,不可行;
$3.$如果当前矩形的四个顶点不在同一圆内,分成$4$部分继续判断.
#include<cmath>
#include<ctime>
#include<queue>
#include<stack>
#include<cstdio>
#include<vector>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 55
#define K 1e-7
#define eps 1e-13
using namespace std;
int n,t;
double a[N],x[N],y[N],r[N],l,w,lef,rig,mid;
inline double sqr(double x){
return x*x;
}
inline bool in(int i,double k,double n,double m){
double d=sqr(x[i]-n)+sqr(y[i]-m);
return d<=sqr(r[i])+eps;
}
inline bool chk(double k,double n1,double n2,double m1,double m2){
bool f1=0,f2=0,f3=0,f4=0;
if(fabs(n1-n2)<eps&&fabs(m1-m2)<eps) return true;
for(int i=1,l1,l2,l3,l4;i<=n;++i){
l1=in(i,k,n1,m1);l2=in(i,k,n1,m2);
l3=in(i,k,n2,m1);l4=in(i,k,n2,m2);
if(l1&&l2&&l3&&l4) return true;
f1|=l1;f2|=l2;f3|=l3;f4|=l4;
}
if(!f1||!f2||!f3||!f4) return false;
double mm=(m1+m2)*0.5,nn=(n1+n2)*0.5;
return chk(k,n1,nn,m1,mm)&&chk(k,n1,nn,mm,m2)\
&&chk(k,nn,n2,m1,mm)&&chk(k,nn,n2,mm,m2);
}
inline void Aireen(){
scanf("%d",&t);
while(t--){
scanf("%d%lf%lf",&n,&l,&w);
for(int i=1;i<=n;++i)
scanf("%lf%lf%lf",&x[i],&y[i],&a[i]);
lef=0.0;rig=l+w;
while(lef+K<rig){
mid=(lef+rig)*0.5;
for(int i=1;i<=n;++i)
r[i]=a[i]*mid;
if(chk(mid,0.0,l,0.0,w)) rig=mid;
else lef=mid+K;
}
printf("%.3lf\n",lef);
}
}
int main(){
freopen("cover.in","r",stdin);
freopen("cover.out","w",stdout);
Aireen();
fclose(stdin);
fclose(stdout);
return 0;
}
[bzoj2517]矩形覆盖的更多相关文章
- 【OpenJudge 1793】矩形覆盖
http://noi.openjudge.cn/ch0405/1793/ 好虐的一道题啊. 看数据范围,一眼状压,然后调了好长时间QwQ 很容易想到覆盖的点数作为状态,我用状态i表示至少覆盖状态i表示 ...
- NOIP2002矩形覆盖[几何DFS]
题目描述 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2),p3(3,6),P4(0,7),见图一. 这 ...
- bzoj 1185 旋转卡壳 最小矩形覆盖
题目大意 就是求一个最小矩形覆盖,逆时针输出其上面的点 这里可以看出,那个最小的矩形覆盖必然有一条边经过其中凸包上的两个点,另外三条边必然至少经过其中一个点,而这样的每一个点逆时针走一遍都满足单调性 ...
- [剑指OFFER] 斐波那契数列- 跳台阶 变态跳台阶 矩形覆盖
跳台阶 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. class Solution { public: int jumpFloor(int number) ...
- NOIP2002 矩形覆盖
题四 矩形覆盖(存盘名NOIPG4) [问题描述]: 在平面上有 n 个点(n <= 50),每个点用一对整数坐标表示.例如:当 n=4 时,4个点的坐标分另为:p1(1,1),p2(2,2), ...
- UVA-11983-Weird Advertisement(线段树+扫描线)[求矩形覆盖K次以上的面积]
题意: 求矩形覆盖K次以上的面积 分析: k很小,可以开K颗线段树,用sum[rt][i]来保存覆盖i次的区间和,K次以上全算K次 // File Name: 11983.cpp // Author: ...
- 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1945 Solve ...
- BZOJ:1185: [HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 这计算几何……果然很烦…… 发现自己不会旋转卡壳,补了下,然后发现求凸包也不会…… 凸包:找一个最左下的点,其他点按照与它连边的夹角排序,然后维护一个栈用 ...
- BZOJ 1185: [HNOI2007]最小矩形覆盖 [旋转卡壳]
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1435 Solve ...
随机推荐
- js继承《转》
http://www.jb51.net/article/55540.htm http://www.cnblogs.com/OceanHeaven/p/4965947.html http://www.j ...
- Javascript中document.execCommand()的用法
document.execCommand()方法处理Html数据时常用语法格式如下:document.execCommand(sCommand[,交互方式, 动态参数]) 其中:sCommand为指令 ...
- 几种.NET平台数据持久化框架介绍
原文连接:http://yuxnet.blog.163.com/blog/static/164863495201131532223362/ 在.NET平台下,关于数据持久层框架非常多,本文主要对如下几 ...
- C#/JS 获取二维数组组合
C#获取二维数组组合 using System; using System.Collections.Generic; using System.Linq; using System.Text; usi ...
- maven: 打包可运行的jar包(java application)及依赖项处理
IDE环境中,可以直接用exec-maven-plugin插件来运行java application,类似下面这样: <plugin> <groupId>org.codehau ...
- 线程本地变量ThreadLocal源码解读
一.ThreadLocal基础知识 原始线程现状: 按照传统经验,如果某个对象是非线程安全的,在多线程环境下,对对象的访问必须采用synchronized进行线程同步.但是Spring中的各种模板 ...
- JavaEE PO VO BO DTO POJO DAO 整理总结
佩服能将复杂难懂的技术,抽象成简单易懂事物的人. 厌恶将简单易懂的技术,添加一堆专业术语将别人弄的头晕目眩的人. PO VO BO DTO POJO DAO 总体一览: 1.DAO[data acce ...
- Realm Java的学习、应用、总结
从React Native珠三角沙龙会议了解到Realm这个开源库,然后开始学习.理解和使用Realm.Realm是跨平台.支持多种主流语言,这里主要是对Realm Java结合实际项目的一些情况进行 ...
- 准标识符(Quasi-dientifier, QI)
Quasi-identifier From Wikipedia, the free encyclopedia Quasi-identifiers are pieces of information t ...
- thinkphp 配置多数据库
1配置文件中配置另一数据库连接信息 例如: 'TestModelConfig' => array( //'配置项'=>'配置值' 'DB_TYPE' => 'mysql', // 数 ...