HDU5855 Less Time, More profit(最大权闭合子图)
题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=5855
Description
The city planners plan to build N plants in the city which has M shops.
Each shop needs products from some plants to make profit of proi units.
Building ith plant needs investment of payi units and it takes ti days.
Two or more plants can be built simultaneously, so that the time for building multiple plants is maximum of their periods(ti).
You should make a plan to make profit of at least L units in the shortest period.
Input
First line contains T, a number of test cases.
For each test case, there are three integers N, M, L described above.
And there are N lines and each line contains two integers payi, ti(1<= i <= N).
Last there are M lines and for each line, first integer is proi, and there is an integer k and next k integers are index of plants which can produce material to make profit for the shop.
1 <= T <= 30
1 <= N, M <= 200
1≤L,ti≤1000000000
1≤payi,proi≤30000
Output
For each test case, first line contains a line “Case #x: t p”, x is the number of the case, t is the shortest period and p is maximum profit in t hours. You should minimize t first and then maximize p.
If this plan is impossible, you should print “Case #x: impossible”
Sample Input
2
1 1 2
1 5
3 1 1
1 1 3
1 5
3 1 1
Sample Output
Case #1: 5 2
Case #2: impossible
分析
题目大概说有n个工厂,建各个工厂分别要payi的花费和ti的时间,可以同时建工厂。此外还有m个商店,如果各个商店所需要k间工厂都建了,那么就得到proi的收益。现在希望收益大于等于l,问在建工厂所花时间最少的前提下,能获得的最大收益是多少。
二分时间,判定最大收益能否大于等于l;而求最大收益,这就是典型的最大权闭合子图的模型了,最小割求解即可。
代码
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 444
#define MAXM 444*888 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=0;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=0; edge[NE].flow=0;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-1,sizeof(level));
memset(gap,0,sizeof(gap));
level[vt]=0;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-1) continue;
level[v]=level[u]+1;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-1,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=0,aug=INF;
gap[0]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+1){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^1].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==0) break;
level[u]=minlevel+1;
gap[level[u]]++;
u=pre[u];
}
return flow;
} int n,m,l;
int pay[222],time[222],pro[222];
vector<int> need[222]; int isok(int t){
vs=0; vt=n+m+1; NV=vt+1; NE=0;
memset(head,-1,sizeof(head));
int totpro=0;
for(int i=1; i<=n; ++i){
if(time[i]<=t) addEdge(i+m,vt,pay[i]);
}
for(int i=1; i<=m; ++i){
bool flag=1;
for(int j=0; j<need[i].size(); ++j){
if(time[need[i][j]]>t){
flag=0;
break;
}
}
if(flag==0) continue;
addEdge(vs,i,pro[i]);
totpro+=pro[i];
for(int j=0; j<need[i].size(); ++j){
addEdge(i,need[i][j]+m,INF);
}
}
int res=totpro-ISAP();
if(res>=l) return res;
return -1;
} int main(){
int t;
scanf("%d",&t);
for(int cse=1; cse<=t; ++cse){
scanf("%d%d%d",&n,&m,&l);
for(int i=1; i<=n; ++i){
scanf("%d%d",&pay[i],&time[i]);
}
for(int i=1; i<=m; ++i) need[i].clear();
for(int i=1; i<=m; ++i){
int a,b;
scanf("%d%d",&pro[i],&a);
for(int j=0; j<a; ++j){
scanf("%d",&b);
need[i].push_back(b);
}
}
int l=0,r=1000000001;
while(l<r){
int mid=l+r>>1;
if(isok(mid)!=-1) r=mid;
else l=mid+1;
}
printf("Case #%d: ",cse);
if(l==1000000001){
puts("impossible");
continue;
}
printf("%d %d\n",l,isok(l));
}
return 0;
}
HDU5855 Less Time, More profit(最大权闭合子图)的更多相关文章
- HDU 5855 Less Time, More profit 最大权闭合子图
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5855 Less Time, More profit Time Limit: 2000/1000 MS ...
- Less Time, More profit 最大权闭合子图(最大流最小割)
The city planners plan to build N plants in the city which has M shops. Each shop needs products fro ...
- 2018.11.06 NOIP训练 最大获利(profit)(01分数规划+最大权闭合子图)
传送门 好题啊. ∑i<jpi,jK∗(200−K)>X\frac{\sum_{i<j}p_{i,j}}{K*(200-K)}>XK∗(200−K)∑i<jpi,j ...
- HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...
- 【POJ 2987】Firing (最小割-最大权闭合子图)
裁员 [问题描述] 在一个公司里,老板发现,手下的员工很多都不务正业,真正干事员工的没几个,于是老板决定大裁员,每开除一个人,同时要将其下属一并开除,如果该下属还有下属,照斩不误.给出每个人的贡献值和 ...
- 2018.06.27Firing(最大权闭合子图)
Firing Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 11558 Accepted: 3494 Description ...
- POJ 2987 - Firing - [最大权闭合子图]
题目链接:http://poj.org/problem?id=2987 Time Limit: 5000MS Memory Limit: 131072K Description You’ve fina ...
- BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...
- HDU 3879 Base Station(最大权闭合子图)
经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...
随机推荐
- 解决webstorm乱码
新的web前端学习群,120342833,欢迎大家一起学习,以前在web学习群里的看到了加下..
- microsofr visual studio编写c语言
过程: 1.创建win32 控制台项目 文件->新建->项目->Visual C++ ->Win32 输入项目名称 选择项目保存位置 2.添加->新建如图
- Linux 压缩系列常用命令
tar 命令: http://man.linuxde.net/tar zip 命令: http://man.linuxde.net/zip unzip 命令: http://man.linuxde.n ...
- mysql的事务处理
事务用于保证数据的一致性,它由一组相关的DML语句组成,该组的DML语句要么全部成功,要么全部失败. 示例: 银行账单 $mysqli=new mysqli("localhost" ...
- vpn,可以连接上,但是不能访问局域网内共享的文件怎么办
不选用VPN的上网关,就可以识别域用户访问共享文件的权限了,在VPN连接的属性里双击TCP/IP协议-高级-去掉勾选"在远程网络上使用默认网关".
- securecrt 用心跳保持连接
选项->会话->终端->发送协议NO-OP(P)
- .net学习之Session、Cookie、手写Ajax代码以及请求流程
1.IIS 7 以上版本集成了两种模式,一种是经典模式,一种是集成模式(直接将asp.net框架集成到IIS中) 2.浏览器和服务器端通过什么技术来实现的?Socket(套接字),通信的语法是HTTP ...
- 利用YaHoo YUI实现Javascript CSS 压缩 分类: C# 2014-07-13 19:07 371人阅读 评论(0) 收藏
网站优化时,往往需要对js文件,css文件进行压缩,以达到减少网络传输数据,减少网页加载时间:利用YaHoo的YUI可以实现Javascript,CSS,压缩,包括在线的js压缩和程序压缩,发现C#也 ...
- JavaScript - 事件流
事件流 事件冒泡就是事件沿DOM树向上传播,在没一级节点上都会发生,直至传播到document对象. 事件捕获正好相反,但是老版本的浏览器不支持,因此很少有人使用事件捕获. 事件处理程序 HTMl 事 ...
- 第二篇:SOUI源码的获取及编译
源代码的获取 SOUI的源码采用SVN管理. SVN:http://code.taobao.org/svn/soui2 这里主要包含两个目录:trunk 及 third-part. trunk目录保存 ...