HDU5855 Less Time, More profit(最大权闭合子图)
题目
Source
http://acm.hdu.edu.cn/showproblem.php?pid=5855
Description
The city planners plan to build N plants in the city which has M shops.
Each shop needs products from some plants to make profit of proi units.
Building ith plant needs investment of payi units and it takes ti days.
Two or more plants can be built simultaneously, so that the time for building multiple plants is maximum of their periods(ti).
You should make a plan to make profit of at least L units in the shortest period.
Input
First line contains T, a number of test cases.
For each test case, there are three integers N, M, L described above.
And there are N lines and each line contains two integers payi, ti(1<= i <= N).
Last there are M lines and for each line, first integer is proi, and there is an integer k and next k integers are index of plants which can produce material to make profit for the shop.
1 <= T <= 30
1 <= N, M <= 200
1≤L,ti≤1000000000
1≤payi,proi≤30000
Output
For each test case, first line contains a line “Case #x: t p”, x is the number of the case, t is the shortest period and p is maximum profit in t hours. You should minimize t first and then maximize p.
If this plan is impossible, you should print “Case #x: impossible”
Sample Input
2
1 1 2
1 5
3 1 1
1 1 3
1 5
3 1 1
Sample Output
Case #1: 5 2
Case #2: impossible
分析
题目大概说有n个工厂,建各个工厂分别要payi的花费和ti的时间,可以同时建工厂。此外还有m个商店,如果各个商店所需要k间工厂都建了,那么就得到proi的收益。现在希望收益大于等于l,问在建工厂所花时间最少的前提下,能获得的最大收益是多少。
二分时间,判定最大收益能否大于等于l;而求最大收益,这就是典型的最大权闭合子图的模型了,最小割求解即可。
代码
#include<cstdio>
#include<cstring>
#include<queue>
#include<algorithm>
using namespace std;
#define INF (1<<30)
#define MAXN 444
#define MAXM 444*888 struct Edge{
int v,cap,flow,next;
}edge[MAXM];
int vs,vt,NE,NV;
int head[MAXN]; void addEdge(int u,int v,int cap){
edge[NE].v=v; edge[NE].cap=cap; edge[NE].flow=0;
edge[NE].next=head[u]; head[u]=NE++;
edge[NE].v=u; edge[NE].cap=0; edge[NE].flow=0;
edge[NE].next=head[v]; head[v]=NE++;
} int level[MAXN];
int gap[MAXN];
void bfs(){
memset(level,-1,sizeof(level));
memset(gap,0,sizeof(gap));
level[vt]=0;
gap[level[vt]]++;
queue<int> que;
que.push(vt);
while(!que.empty()){
int u=que.front(); que.pop();
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(level[v]!=-1) continue;
level[v]=level[u]+1;
gap[level[v]]++;
que.push(v);
}
}
} int pre[MAXN];
int cur[MAXN];
int ISAP(){
bfs();
memset(pre,-1,sizeof(pre));
memcpy(cur,head,sizeof(head));
int u=pre[vs]=vs,flow=0,aug=INF;
gap[0]=NV;
while(level[vs]<NV){
bool flag=false;
for(int &i=cur[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[u]==level[v]+1){
flag=true;
pre[v]=u;
u=v;
//aug=(aug==-1?edge[i].cap:min(aug,edge[i].cap));
aug=min(aug,edge[i].cap-edge[i].flow);
if(v==vt){
flow+=aug;
for(u=pre[v]; v!=vs; v=u,u=pre[u]){
edge[cur[u]].flow+=aug;
edge[cur[u]^1].flow-=aug;
}
//aug=-1;
aug=INF;
}
break;
}
}
if(flag) continue;
int minlevel=NV;
for(int i=head[u]; i!=-1; i=edge[i].next){
int v=edge[i].v;
if(edge[i].cap!=edge[i].flow && level[v]<minlevel){
minlevel=level[v];
cur[u]=i;
}
}
if(--gap[level[u]]==0) break;
level[u]=minlevel+1;
gap[level[u]]++;
u=pre[u];
}
return flow;
} int n,m,l;
int pay[222],time[222],pro[222];
vector<int> need[222]; int isok(int t){
vs=0; vt=n+m+1; NV=vt+1; NE=0;
memset(head,-1,sizeof(head));
int totpro=0;
for(int i=1; i<=n; ++i){
if(time[i]<=t) addEdge(i+m,vt,pay[i]);
}
for(int i=1; i<=m; ++i){
bool flag=1;
for(int j=0; j<need[i].size(); ++j){
if(time[need[i][j]]>t){
flag=0;
break;
}
}
if(flag==0) continue;
addEdge(vs,i,pro[i]);
totpro+=pro[i];
for(int j=0; j<need[i].size(); ++j){
addEdge(i,need[i][j]+m,INF);
}
}
int res=totpro-ISAP();
if(res>=l) return res;
return -1;
} int main(){
int t;
scanf("%d",&t);
for(int cse=1; cse<=t; ++cse){
scanf("%d%d%d",&n,&m,&l);
for(int i=1; i<=n; ++i){
scanf("%d%d",&pay[i],&time[i]);
}
for(int i=1; i<=m; ++i) need[i].clear();
for(int i=1; i<=m; ++i){
int a,b;
scanf("%d%d",&pro[i],&a);
for(int j=0; j<a; ++j){
scanf("%d",&b);
need[i].push_back(b);
}
}
int l=0,r=1000000001;
while(l<r){
int mid=l+r>>1;
if(isok(mid)!=-1) r=mid;
else l=mid+1;
}
printf("Case #%d: ",cse);
if(l==1000000001){
puts("impossible");
continue;
}
printf("%d %d\n",l,isok(l));
}
return 0;
}
HDU5855 Less Time, More profit(最大权闭合子图)的更多相关文章
- HDU 5855 Less Time, More profit 最大权闭合子图
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5855 Less Time, More profit Time Limit: 2000/1000 MS ...
- Less Time, More profit 最大权闭合子图(最大流最小割)
The city planners plan to build N plants in the city which has M shops. Each shop needs products fro ...
- 2018.11.06 NOIP训练 最大获利(profit)(01分数规划+最大权闭合子图)
传送门 好题啊. ∑i<jpi,jK∗(200−K)>X\frac{\sum_{i<j}p_{i,j}}{K*(200-K)}>XK∗(200−K)∑i<jpi,j ...
- HDU4971 A simple brute force problem.(强连通分量缩点 + 最大权闭合子图)
题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=4971 Description There's a company with several ...
- 【POJ 2987】Firing (最小割-最大权闭合子图)
裁员 [问题描述] 在一个公司里,老板发现,手下的员工很多都不务正业,真正干事员工的没几个,于是老板决定大裁员,每开除一个人,同时要将其下属一并开除,如果该下属还有下属,照斩不误.给出每个人的贡献值和 ...
- 2018.06.27Firing(最大权闭合子图)
Firing Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 11558 Accepted: 3494 Description ...
- POJ 2987 - Firing - [最大权闭合子图]
题目链接:http://poj.org/problem?id=2987 Time Limit: 5000MS Memory Limit: 131072K Description You’ve fina ...
- BZOJ1565 [NOI2009]植物大战僵尸(拓扑排序 + 最大权闭合子图)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=1565 Description Input Output 仅包含一个整数,表示可以 ...
- HDU 3879 Base Station(最大权闭合子图)
经典例题,好像说可以转化成maxflow(n,n+m),暂时只可以勉强理解maxflow(n+m,n+m)的做法. 题意:输入n个点,m条边的无向图.点权为负,边权为正,点权为代价,边权为获益,输出最 ...
随机推荐
- JAVA addShutdownHook测试
public static void main(String[] args) { System.out.println("1111111111"); try { Thread.sl ...
- Mysql之取消主从复制
Mysql5.7 Mysql取消主从复制很简单.只需在其要终止同步的Server上[一般是Slave]执行下面语句即可: stop slave; reset slave; 如图: .
- NYOJ题目1047欧几里得
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAskAAAIcCAIAAACLpKQmAAAgAElEQVR4nO3dv1LjOsMH4O8m6LkQ6l ...
- 1.1-java创建包和类的方法
1.new-package-命名方法com打头.中间名称.后台要创建的class 2.创建class- new-class 选择一下主方法 代码示例 编译完保存一下就能输出信息,一直没有保存才 ...
- SQLServer子查询
in谓词子查询 select * from dbo.Worker where did in (select dID from DepartMent) 比较运算子查询 select * from Wor ...
- 知乎大牛的关于JS解答
很多疑惑一扫而空.... http://www.zhihu.com/question/35905242?sort=created JS的单线程,浏览器的多进程,与CPU,OS的对位. 互联网移动的起起 ...
- Tiny Rss Reader - 迷你RSS阅读器
发布新软件 TinyRss: Windows平台上的一个小巧的Rss阅读器. 用户界面: 项目地址: https://github.com/movsb/tinyrss.git 测试下载: http:/ ...
- Tkprof工具详解一
注明:一些文章是从别人的博客中转载过来的,方便自己以后查阅:在数据库生成的oracle trace文件中,可读性是比较差的,此时可使用tkprof工具来格式化trace文件,tkprof是一个命令 ...
- Angular JS [Draft]
AngularJS应用是完全运行在客户端的应用.没有后端的支持,我们只能展示随页面一起加载进来的数据.AngularJS提供了几种方式从服务器端获取数据. $http服务 $http 封装了浏览器原生 ...
- C# 重绘tabControl,添加关闭按钮(页签)
C# 重绘tabControl,添加关闭按钮(页签) 调用方法 参数: /// <summary> /// 初始化 /// </summary> /// <param n ...