《zw版·Halcon-delphi系列原创教程》 Halcon分类函数002·AI人工智能
《zw版·Halcon-delphi系列原创教程》 Halcon分类函数002·AI人工智能
AI人工智能:包括knn、gmm、svm等
为方便阅读,在不影响说明的前提下,笔者对函数进行了简化:
- :: 用符号“**”,替换:“procedure”
- :: 用大写字母“X”,替换:“IHUntypedObjectX”
- :: 省略了字符:“const”、“OleVariant”
【示例】 说明
函数:
procedure AddNoiseWhiteContourXld( const Contours: IHUntypedObjectX; out NoisyContours: IHUntypedObjectX; NumRegrPoints: OleVariant; Amp: OleVariant);
简化后为:
** AddNoiseWhiteContourXld( Contours: X; out NoisyContours: X; NumRegrPoints, Amp);
** AddClassTrainDataGmm( GMMHandle, ClassTrainDataHandle);
说明, add_class_train_data_gmm ( : : GMMHandle,ClassTrainDataHandle : ) ,增加gmm训练数据 ** AddClassTrainDataKnn( KNNHandle, ClassTrainDataHandle);
说明, 增加knn训练数据 ** AddClassTrainDataSvm( SVMHandle, ClassTrainDataHandle);
说明, 增加svm训练数据 ** AddSampleClassGmm( GMMHandle, Features, ClassID, Randomize);
说明, add_sample_class_gmm,把一个训练样本添加到一个高斯混合模型的训练数据上。 ** AddSampleClassKnn( KNNHandle, Features, ClassID); ** AddSampleClassSvm( SVMHandle, Features, Class_);
说明, add_sample_class_svm,把一个训练样本添加到一个支持向量机的训练数据上。 ** AddSamplesImageClassGmm( Image: X; ClassRegions: X; GMMHandle, Randomize);
说明, add_samples_image_class_gmm,将从图像中获取的测试样本添加到高斯混合模型的测试数据库中。 ** AddSamplesImageClassKnn( Image: X; ClassRegions: X; KNNHandle); ** AddSamplesImageClassSvm( Image: X; ClassRegions: X; SVMHandle);
说明, add_samples_image_class_svm,将从图像中获取的测试样本添加到一个支持向量机的测试数据库中。 ** ClassifyClassGmm( GMMHandle, Features, Num, out ClassID, out ClassProb, out Density, out KSigmaProb);
说明, classify_class_gmm,通过一个高斯混合模型来计算一个特征向量的类。 ** ClassifyClassKnn( KNNHandle, Features, out Result, out Rating); ** ClassifyClassSvm( SVMHandle, Features, Num, out Class_);
说明, classify_class_svm,通过一个支持向量机为一个特征向量分类。 ** ClassifyImageClassGmm( Image: X; out ClassRegions: X; GMMHandle, RejectionThreshold);
说明, classify_image_class_gmm,根据高斯混合模式分类图像。 ** ClassifyImageClassKnn( Image: X; out ClassRegions: X; out DistanceImage: X; KNNHandle, RejectionThreshold);
说明, 根据KNN模式分类图像。 ** ClassifyImageClassSvm( Image: X; out ClassRegions: X; SVMHandle);
说明, classify_image_class_svm,根据支持向量机分类图像。 ** ClearAllClassGmm;
说明, clear_all_class_gmm,清除所有高斯混合模型。 ** ClearAllClassKnn;
说明, 清除所有knn模型。 ** ClearAllClassSvm;
说明, clear_all_class_svm,清除所有支持向量机。 ** ClearAllOcrClassKnn;
说明, 清除所有创建的OCR-knn分级器 ** ClearAllOcrClassSvm;
说明, clear_all_ocr_class_svm,清除所有的基于OCR分级器的SVM,释放相应的存储空间。 ** ClearClassGmm( GMMHandle);
说明, clear_class_gmm,清除一个高斯混合模型。 ** ClearClassKnn( KNNHandle);
说明, 清除一个KNN模型。 ** ClearClassSvm( SVMHandle);
说明, clear_class_svm,清除一个支持向量机。 ** ClearOcrClassKnn( OCRHandle); ** ClearOcrClassSvm( OCRHandle);
说明, clear_ocr_class_svm,清除基于OCR分级器的一个SVM,释放相应的存储空间。 ** ClearSamplesClassGmm( GMMHandle);
说明, clear_samples_class_gmm,清除一个高斯混合模型的训练数据。 ** ClearSamplesClassSvm( SVMHandle);
说明, clear_samples_class_svm,清除一个支持向量机的训练数据。 ** CreateClassGmm( NumDim, NumClasses, NumCenters, CovarType, Preprocessing, NumComponents, RandSeed, out GMMHandle);
说明, create_class_gmm,为分类创建一个高斯混合模型。 ** CreateClassKnn( NumDim, out KNNHandle);
说明, 建立knn分类器 ** CreateClassLutGmm( GMMHandle, GenParamNames, GenParamValues, out ClassLUTHandle);
说明, 建立lut-gmm分类器 ** CreateClassLutKnn( KNNHandle, GenParamNames, GenParamValues, out ClassLUTHandle);
说明, 建立lut-knn分类器 ** CreateClassLutSvm( SVMHandle, GenParamNames, GenParamValues, out ClassLUTHandle);
说明, 建立lut-svm分类器 ** CreateClassSvm( NumFeatures, KernelType, KernelParam, Nu, NumClasses, Mode, Preprocessing, NumComponents, out SVMHandle);
说明, create_class_svm,为模式分类创建一个支持向量机。 ** CreateOcrClassKnn( WidthCharacter, HeightCharacter, Interpolation, Features, Characters, GenParamNames, GenParamValues, out OCRHandle);
说明, 创建knn分级器。 ** CreateOcrClassSvm( WidthCharacter, HeightCharacter, Interpolation, Features, Characters, KernelType, KernelParam, Nu, Mode, Preprocessing, NumComponents, out OCRHandle);
说明, create_ocr_class_svm,利用支持向量机创建一个OCR分级器。 ** DeserializeClassGmm( SerializedItemHandle, out GMMHandle);
说明, gmm分类器数据转换 ** DeserializeClassKnn( SerializedItemHandle, out KNNHandle);
说明, knn分类器数据转换 ** DeserializeClassSvm( SerializedItemHandle, out SVMHandle);
说明, svm分类器数据转换 ** DeserializeOcrClassKnn( SerializedItemHandle, out OCRHandle);
说明, ocr-knn分类器数据转换 ** DeserializeOcrClassSvm( SerializedItemHandle, out OCRHandle);
说明, ocr-svm分类器数据转换 ** DoOcrMultiClassKnn( Character: X; Image: X; OCRHandle, out Class_, out Confidence);
说明, do_ocr_multi,给多个Character(字符)分配一个KNN类。 ** DoOcrMultiClassSvm( Character: X; Image: X; OCRHandle, out Class_);
说明, do_ocr_multi_class_svm,根据基于OCR分级器的SVM将大量字符分类。 ** DoOcrSingleClassKnn( Character: X; Image: X; OCRHandle, NumClasses, NumNeighbors, out Class_, out Confidence);
说明, do_ocr_multi,给每一个Character(字符)分配一个KNN类。 ** DoOcrSingleClassSvm( Character: X; Image: X; OCRHandle, Num, out Class_);
说明, do_ocr_single_class_svm,根据基于OCR分级器的SVM将单个字符分类。 ** DoOcrWordKnn( Character: X; Image: X; OCRHandle, Expression, NumAlternatives, NumCorrections, out Class_, out Confidence, out Word, out Score);
说明, 将字符组作为一个实体。 ** DoOcrWordSvm( Character: X; Image: X; OCRHandle, Expression, NumAlternatives, NumCorrections, out Class_, out Word, out Score);
说明, do_ocr_word_svm,利用OCR分级器将一系列相关字符分类。 ** EvaluateClassGmm( GMMHandle, Features, out ClassProb, out Density, out KSigmaProb);
说明, evaluate_class_gmm,通过一个高斯混合模型评价一个特征向量。 ** GetClassTrainDataGmm( GMMHandle, out ClassTrainDataHandle);
说明, 获取gmm分类器系列数据 ** GetClassTrainDataKnn( KNNHandle, out ClassTrainDataHandle);
说明, 获取knn分类器系列数据 ** GetClassTrainDataSvm( SVMHandle, out ClassTrainDataHandle);
说明, 获取svm分类器系列数据 ** GetFeaturesOcrClassKnn( Character: X; OCRHandle, Transform, out Features);
说明, 根据OCR分级器OCRHandl,e确定的字符计算其特征参数,并将它们返回到Features。 ** GetFeaturesOcrClassSvm( Character: X; OCRHandle, Transform, out Features);
说明, get_features_ocr_class_svm,计算一个字符的特征。 ** GetParamsClassGmm( GMMHandle, out NumDim, out NumClasses, out MinCenters, out MaxCenters, out CovarType);
说明, get_params_class_gmm,返回一个高斯混合模型的参数。 ** GetParamsClassKnn( KNNHandle, GenParamNames, out GenParamValues);
说明, 返回knn感知器的参数。 ** GetParamsClassSvm( SVMHandle, out NumFeatures, out KernelType, out KernelParam, out Nu, out NumClasses, out Mode, out Preprocessing, out NumComponents);
说明, get_params_class_svm,返回一个支持向量机的参数。 ** GetParamsOcrClassKnn( OCRHandle, out WidthCharacter, out HeightCharacter, out Interpolation, out Features, out Characters, out Preprocessing, out NumTrees);
说明, 返回knn-ocr分类器的参数。 ** GetParamsOcrClassSvm( OCRHandle, out WidthCharacter, out HeightCharacter, out Interpolation, out Features, out Characters, out KernelType, out KernelParam, out Nu, out Mode, out Preprocessing, out NumComponents);
说明, get_params_ocr_class_svm,返回一个OCR分级器的参数。 ** GetPrepInfoClassGmm( GMMHandle, Preprocessing, out InformationCont, out CumInformationCont);
说明, get_prep_info_class_gmm,计算一个高斯混合模型的预处理特征向量的信息内容。 ** GetPrepInfoClassSvm( SVMHandle, Preprocessing, out InformationCont, out CumInformationCont);
说明, get_prep_info_class_svm,计算一个支持向量机的预处理特征向量的信息内容。 ** GetPrepInfoOcrClassSvm( OCRHandle, TrainingFile, Preprocessing, out InformationCont, out CumInformationCont);
说明, get_prep_info_ocr_class_svm,计算基于OCR分级器的SVM的预定义特征矢量的信息内容。 ** GetSampleClassGmm( GMMHandle, NumSample, out Features, out ClassID);
说明, get_sample_class_gmm,从一个高斯混合模型的训练数据返回训练样本。 ** GetSampleClassKnn( KNNHandle, IndexSample, out Features, out ClassID);
说明, 从knn感知器的训练数据返回一个训练样本。 ** GetSampleClassSvm( SVMHandle, IndexSample, out Features, out Target);
说明, get_sample_class_svm,从一个支持向量机的训练数据返回一个训练样本。 ** GetSampleNumClassGmm( GMMHandle, out NumSamples);
说明, get_sample_num_class_gmm,返回存储在一个高斯混合模型的训练数据中的训练样本的数量。 ** GetSampleNumClassKnn( KNNHandle, out NumSamples); ** GetSampleNumClassSvm( SVMHandle, out NumSamples);
说明, get_sample_num_class_svm,返回存储在一个支持向量机训练数据中的训练样本的数量。 ** GetSupportVectorClassSvm( SVMHandle, IndexSupportVector, out Index);
说明, get_support_vector_class_svm,从一个训练过的支持向量机返回一个支持向量坐标。 ** GetSupportVectorNumClassSvm( SVMHandle, out NumSupportVectors, out NumSVPerSVM);
说明, get_support_vector_num_class_svm,返回一个支持向量机的支持向量的数量。 ** GetSupportVectorNumOcrClassSvm( OCRHandle, out NumSupportVectors, out NumSVPerSVM);
说明, get_support_vector_num_ocr_class_svm,返回OCR分级器支持的矢量的数目。 ** GetSupportVectorOcrClassSvm( OCRHandle, IndexSupportVector, out Index);
说明, get_support_vector_ocr_class_svm,返回基于支持向量机的已测试OCR分级器中支持向量坐标。 ** ReadClassGmm( FileName, out GMMHandle);
说明, read_class_gmm,从一个文件中读取一个高斯混合模型。 ** ReadClassKnn( FileName, out KNNHandle);
说明, 读取knn数据 ** ReadClassSvm( FileName, out SVMHandle);
说明, read_class_svm,从一个文件中读取一个支持向量机。 ** ReadOcrClassKnn( FileName, out OCRHandle);
说明, 读取ocr-knn数据 ** ReadOcrClassSvm( FileName, out OCRHandle);
说明, read_ocr_class_svm,从文件中读取基于OCR分级器的SVM。 ** ReadSamplesClassGmm( GMMHandle, FileName);
说明, read_samples_class_gmm,从一个文件中读取一个高斯混合模型的训练数据。 ** ReadSamplesClassSvm( SVMHandle, FileName);
说明, read_samples_class_svm,从一个文件中读取一个支持向量机的训练数据。 ** ReduceClassSvm( SVMHandle, Method, MinRemainingSV, MaxError, out SVMHandleReduced);
说明, reduce_class_svm,为了更快分类,用一个降低的支持向量机近似一个训练过的支持向量机。 ** ReduceOcrClassSvm( OCRHandle, Method, MinRemainingSV, MaxError, out OCRHandleReduced);
说明, reduce_ocr_class_svm,根据一个减小的SVM来接近一个基于OCR分级器的SVM。 ** SelectFeatureSetGmm( ClassTrainDataHandle, SelectionMethod, GenParamNames, GenParamValues, out GMMHandle, out SelectedFeatureIndices, out Score);
说明, 根据gmm特征选择对象 ** SelectFeatureSetKnn( ClassTrainDataHandle, SelectionMethod, GenParamNames, GenParamValues, out KNNHandle, out SelectedFeatureIndices, out Score);
说明, 根据knn特征选择对象 ** SelectFeatureSetSvm( ClassTrainDataHandle, SelectionMethod, GenParamNames, GenParamValues, out SVMHandle, out SelectedFeatureIndices, out Score);
说明, 根据svm特征选择对象 ** SelectFeatureSetTrainfKnn( TrainingFile, FeatureList, SelectionMethod, Width, Height, GenParamNames, GenParamValues, out OCRHandle, out FeatureSet, out Score);
说明, 根据knn训练参数特征选择对象 ** SelectFeatureSetTrainfSvm( TrainingFile, FeatureList, SelectionMethod, Width, Height, GenParamNames, GenParamValues, out OCRHandle, out FeatureSet, out Score);
说明, 根据svm训练参数特征选择对象 ** SelectFeatureSetTrainfSvmProtected( TrainingFile, Password, FeatureList, SelectionMethod, Width, Height, GenParamNames, GenParamValues, out OCRHandle, out FeatureSet, out Score);
说明, 根据svm训练参数特征选择对象 ** SerializeClassGmm( GMMHandle, out SerializedItemHandle);
说明, gmm分类器模型数据序列化 ** SerializeClassKnn( KNNHandle, out SerializedItemHandle);
说明, knn分类器模型数据序列化 ** SerializeClassSvm( SVMHandle, out SerializedItemHandle);
说明, svm分类器模型数据序列化 ** SerializeOcrClassKnn( OCRHandle, out SerializedItemHandle);
说明, knn分类器数据序列化 ** SerializeOcrClassSvm( OCRHandle, out SerializedItemHandle);
说明, svm分类器数据序列化 ** SetParamsClassKnn( KNNHandle, GenParamNames, GenParamValues);
说明, 设置knn训练器参数 ** TrainClassGmm( GMMHandle, MaxIter, Threshold, ClassPriors, Regularize, out Centers, out Iter);
说明, train_class_gmm,训练一个高斯混合模型。 ** TrainClassKnn( KNNHandle, GenParamNames, GenParamValues);
说明, train_class_knn,训练LNN感知器。 ** TrainClassSvm( SVMHandle, Epsilon, TrainMode);
说明, train_class_svm,训练一个支持向量机。 ** TrainfOcrClassKnn( OCRHandle, TrainingFile, GenParamNames, GenParamValues);
说明, ocr-knn分类器训练 ** TrainfOcrClassSvm( OCRHandle, TrainingFile, Epsilon, TrainMode);
说明, trainf_ocr_class_svm,测试一个OCR分级器。 ** TrainfOcrClassSvmProtected( OCRHandle, TrainingFile, Password, Epsilon, TrainMode);
说明, ocr-svm分类器训练 ** WriteClassGmm( GMMHandle, FileName);
说明, write_class_gmm,向文件中写入一个高斯混合模型。 ** WriteClassKnn( KNNHandle, FileName); ** WriteClassSvm( SVMHandle, FileName);
说明, write_class_svm,向一个文件中写入一个支持向量机。 ** WriteOcrClassKnn( OCRHandle, FileName);
说明, 保存ocr-knn分类器数据 ** WriteOcrClassSvm( OCRHandle, FileName);
说明, write_ocr_class_svm,将一个OCR分级器写入文件。 ** WriteSamplesClassGmm( GMMHandle, FileName);
说明, write_samples_class_gmm,向文件中写入一个高斯混合模型的训练数据。 ** WriteSamplesClassSvm( SVMHandle, FileName);
说明, write_samples_class_svm,向一个文件中写入一个支持向量机的训练数据。
《zw版·Halcon-delphi系列原创教程》 Halcon分类函数002·AI人工智能的更多相关文章
- 【《zw版·Halcon与delphi系列原创教程》 zw_halcon人脸识别
[<zw版·Halcon与delphi系列原创教程>zw_halcon人脸识别 经常有用户问,halcon人脸识别方面的问题. 可能是cv在人脸识别.车牌识别方面的投入太多了. 其实,人脸 ...
- 【《zw版·Halcon与delphi系列原创教程》Halcon图层与常用绘图函数
[<zw版·Halcon与delphi系列原创教程>Halcon图层与常用绘图函数 Halcon的绘图函数,与传统编程vb.c.delphi语言完全不同, 传统编程语言,甚至cad ...
- 《zw版Halcon与delphi系列原创教程》发布说明
<zw版Halcon与delphi系列原创教程>发布说明 zw转载的<台湾nvp系列halcon-delphi教程>,虽然很多,不过基本上都是从cnc.数控角度的demo.. ...
- 《zw版·delphi与Halcon系列原创教程》THOperatorSetX版hello,zw
<zw版·delphi与Halcon系列原创教程>THOperatorSetX版hello,zw 下面介绍v3版的hello,zw. Halcon两大核心控件,THImagex.THOpe ...
- 《zw版·delphi与halcon系列原创教程》zw版_THOperatorSetX控件函数列表 v11中文增强版
<zw版·delphi与halcon系列原创教程>zw版_THOperatorSetX控件函数列表v11中文增强版 Halcon虽然庞大,光HALCONXLib_TLB.pas文件,源码就 ...
- 《zw版·delphi与halcon系列原创教程》zw版_THImagex控件函数列表
<zw版·delphi与halcon系列原创教程>zw版_THImagex控件函数列表 Halcon虽然庞大,光HALCONXLib_TLB.pas文件,源码就要7w多行,但核心控件就是两 ...
- 《zw版·ddelphi与halcon系列原创教程》Halcon的短板与delphi
[<zw版·delphi与Halcon系列原创教程>Halcon的短板与delphi 看过<delphi与Halcon系列>blog的网友都知道,笔者对Halcon一直是非常推 ...
- 《zw版·delphi与halcon系列原创教程》hello,zw
<zw版·delphi与halcon系列原创教程>hello,zw 按惯例,第一个程序是‘hello’ 毕竟,Halcon是专业的图像库,所以我们就不用纯文本版的,来一个专业版.Halco ...
- 《zw版·Halcon-delphi系列原创教程》 zw版-Halcon常用函数Top100中文速查手册
<zw版·Halcon-delphi系列原创教程> zw版-Halcon常用函数Top100中文速查手册 Halcon函数库非常庞大,v11版有1900多个算子(函数). 这个Top版,对 ...
随机推荐
- c# Dictionary的遍历和排序(转)
c#遍历的两种方式 for和foreach for: 需要指定首位数据.末尾数据.数据长度: for遍历语句中可以改变数据的值: 遍历规则可以自定义,灵活性较高 foreach: 需要实现ienume ...
- java script小结
javascript是一种嵌入在网页里的程序段,是一种解释性语言,只能被浏览器解释执行.出于安全性的考虑,增加了javascript的限制,增强了客户端交互功能. JavaScript的作用: 1.增 ...
- android-对话框
一.常用对话框 AlertDialog: 功能最丰富,实际应用最广的对话框(以下三种对话框都是该对话框的子类) ProgressDialog:进度对话框.这个对话框只是对进度条的包装 DatePick ...
- Intent实现Activity组件之间的通信
今天讲解的是使用Intent实现Activity组件之间的通信. 一. 使用Intent显式启动Activity,Activity1àActivity2 1. ...
- Maven3下的java web项目
咱们使用Maven3构建一个j2ee项目,项目的成果是一个war包,只需把它部署在服务器上,就可以使用浏览器访问. 具体详细信息 参考 http://www.mossle.com/docs/mave ...
- HTML5初学篇章_3
表单的标签是<form>,它使页面与客户的互动成为可能.而它的大部分元素字自HTML2.0后就没有再改变过,由此可见这是一个多么具有卓越性的设计. <form>标签是用于创建供 ...
- Eclipse序列号生成代码
import java.io.*; public class MyEclipseGen { private static final String LL = "Decompiling thi ...
- 关于Java擦除特性
package thinkingInJava; /* * 模拟擦除 */ public class SimpleHolder { private Object obj ; public void se ...
- Java中this关键字的几种用法
1 . 当成员变量和局部变量重名时,在方法中使用this时,表示的是该方法所在类中的成员变量.(this是当前对象自己) 如:public class Hello { String s = " ...
- C遇到的问题
1. stdout-------printf输出到stdout,并在终端打印 stderr--------perror错误输出到stderr,并在终端打印 2. usleep(1)//代表一微妙 sl ...