CF932G-Palindrome Partition【PAM】
正题
题目链接:https://www.luogu.com.cn/problem/CF932G
题目大意
给出一个长度为\(n\)的字符串,将其分为\(k\)段(\(k\)为任意偶数),记为\(p\)。要求满足对于任意\(i\)都有\(p_i=p_{k-i+1}\)。求方案数。
\(1\leq n\leq 10^6\)
解题思路
考虑将字符串化为\(S_1S_nS_2S_{n-1}S_3S_{n-2}...\)这样的形式,可以发现对于原本相同的段在这里就被表示为了一个偶回文子串。
那么问题就变为了划分若干个偶回文子串。设\(f_i\)表示前\(i\)个的方案的话有一种比较简单的做法,建立\(PAM\)后求出每个前缀的所有偶回文后缀,然后暴力转移。
但是这样的是\(O(n^2)\)的,时间复杂度不符合要求,考虑优化。对于一个回文串来说它的所有回文后缀就是它的\(border\)。而\(broder\)有一个性质就是所有\(broder\)的长度可以被划分成\(log\)个等差数列。
我们可以在\(PAM\)上维护这些等差数列,记录\(top_i\)表示节点\(i\)所在的等差数列的顶部,然后每次使用\(top\)往上跳。加入新的\(x\)节点(或者覆盖以前的已经有的节点)的时候累计一下自己作为末尾时所在等差数列方案和就好了
时间复杂度\(O(n\log n)\)
code
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N=1e6+10,P=1e9+7;
int n,cnt,pos[N],len[N],dis[N],fa[N],top[N],ch[N][26];
char t[N],s[N];int f[N],g[N];
int jump(int x,int p){
while(s[p-len[x]-1]!=s[p])x=fa[x];
return x;
}
int Insert(int x,int p){
x=jump(x,p);
int c=s[p]-'a';
if(!ch[x][c]){
++cnt;len[cnt]=len[x]+2;
int y=jump(fa[x],p);
fa[cnt]=ch[y][c];y=cnt;
dis[y]=len[y]-len[fa[y]];
if(dis[y]!=dis[fa[y]])top[y]=y;
else top[y]=top[fa[y]];ch[x][c]=y;
}
return ch[x][c];
}
int main()
{
scanf("%s",t+1);n=strlen(t+1);
if(n&1)return puts("0")&0;
for(int i=1;i<=n;i+=2)s[i]=t[i/2+1];
for(int i=2;i<=n;i+=2)s[i]=t[n-i/2+1];
len[1]=-1;fa[0]=top[1]=cnt=1;
for(int i=1;i<=n;i++)
pos[i]=Insert(pos[i-1],i);
f[0]=1;
for(int i=1;i<=n;i++){
for(int x=pos[i];x;x=fa[top[x]]){
g[x]=f[i-len[top[x]]];
if(x!=top[x])(g[x]+=g[fa[x]])%=P;
if(!(i&1))(f[i]+=g[x])%=P;
}
}
printf("%d\n",f[n]);
return 0;
}
CF932G-Palindrome Partition【PAM】的更多相关文章
- CF932G Palindrome Partition(回文自动机)
CF932G Palindrome Partition(回文自动机) Luogu 题解时间 首先将字符串 $ s[1...n] $ 变成 $ s[1]s[n]s[2]s[n-1]... $ 就变成了求 ...
- 680. Valid Palindrome II【easy】
680. Valid Palindrome II[easy] Given a non-empty string s, you may delete at most one character. Jud ...
- Device "/dev/sdg" is not a partition【再续】
之前创建asm磁盘的时候总结过一下错误:http://blog.csdn.net/rhys_oracle/article/details/17029333 当今天情况是这种.例如以下: 在使用open ...
- Uva - 12050 Palindrome Numbers【数论】
题目链接:uva 12050 - Palindrome Numbers 题意:求第n个回文串 思路:首先可以知道的是长度为k的回文串个数有9*10^(k-1),那么依次计算,得出n是长度为多少的串,然 ...
- CF932G Palindrome Partition
思路 首先把字符串变为\(S[1]S[n]s[2]s[n-1] \dots\) 这样原来的一个合法的划分方案就变成了用k个长度为偶数的回文子串划分的方案, 然后直接DP,对i位置,可转移的位置就是它的 ...
- HDU 2018 Multi-University Training Contest 1 Triangle Partition 【YY】
传送门:http://acm.hdu.edu.cn/showproblem.php?pid=6300 Triangle Partition Time Limit: 2000/1000 MS (Java ...
- 680. Valid Palindrome II【Easy】【双指针-可以删除一个字符,判断是否能构成回文字符串】
Given a non-empty string s, you may delete at most one character. Judge whether you can make it a pa ...
- 491. Palindrome Number【easy】
Check a positive number is a palindrome or not. A palindrome number is that if you reverse the whole ...
- 洛谷P5496 回文自动机【PAM】模板
回文自动机模板 1.一个串的本质不同的回文串数量是\(O(n)\)级别的 2.回文自动机的状态数不超过串长,且状态数等于本质不同的回文串数量,除了奇偶两个根节点 3.如何统计所有回文串的数量,类似后缀 ...
随机推荐
- c# 对 struct为什么不能继承类和结构的思考
1.类.结构在使用的时候可以不调用构造函数,如果能够继承类,这种情况下不能够初始化基类,因为不执行构造函数 2.结构.所有的结构类型都默认是 sealed,通过 反汇编可以看到 ,这就阻止了结构被继 ...
- GAC
GAC是什么?是用来干嘛的?GAC的全称叫做全局程序集缓存,通俗的理解就是存放各种.net平台下面需要使用的dll的地方.GAC的具体目录在windows/ assembly. 喜欢使用破解软件的朋友 ...
- C++程序调试方式总结
bug调试要根据应用场景和条件,选择什么样子的调试方式很大程度上不是你想选择什么样的调试方式,而是还剩下什么样子的调试方式可用.下面就根据不同的场景和条件来总结一下. 目录: 1.gdb调试或者IDE ...
- The Programmer's Oath程序员的誓言----鲍勃.马丁大叔(Bob Martin)
In order to defend and preserve the honor of the profession of computer programmers, I Promise that, ...
- 前端云原生,以 Kubernetes 为基础设施的高可用 SSR(Vue.js) 渲染微服务初探(开源 Demo)
背景 笔者在逛掘金的时候,有幸看到掘友狼族小狈开源的 genesis - 一个可以支持 SSR 和 CSR 渲染的微服务解决方案.总体来说思想不错,但是基于 Kubernetes 云原生部署方面一直没 ...
- mysql批量新增的语法
?useUnicode=true//语序编码反射光hi &characterEncoding=UTF-8//字符 &autoReconnect=true//自动连接 &useA ...
- for循环操作(for...in、forEach)
1.for...in语句用于对数组或者对象的属性进行循环操作,是for循环的一种. 注意:该方法可用于数组或对象. 语法: for(变量 in 对象/数组){} 如: var obj = { nam ...
- Dubbo | Dubbo快速上手笔记 - 环境与配置
目录 前言 1. Dubbo相关概念 1.1 自动服务发现工作原理 2. 启动文件 2.1 zookeeper-3.4.11\bin\zkServer.cmd 2.2 zookeeper-3.4.11 ...
- 文件权限的管理以及acl权限列表
ls -l? 文件名称 上面的命令以长格式显示文件与目录,每一行都是一个文件或目录的属性数据,每个文件或子目录的属性数据又以7个字段显示,各个字段的说明如下: (1)文件类型与权限:该字段共有10个字 ...
- lsyncd替代inotify+rsync实现实时同步
因公司业务需要需要实时同步日志文件,刚一开始使用的是inotify+rsync来实现实时同步,但时间久而久之发现同步的速度越来越慢,往往延迟好几个小时.查了一下网上的inotify+rsync方案基本 ...