【转】最短路径——Dijkstra算法和Floyd算法

标签(空格分隔): 算法


本文是转载,原文在:最短路径—Dijkstra算法和Floyd算法

注意:以下代码 只是描述思路,没有测试过!!

Dijkstra 算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

执行动画过程如下图

3.算法代码实现:

const int  MAXINT = 32767;
const int MAXNUM = 10;
int dist[MAXNUM];
int prev[MAXNUM]; int A[MAXUNM][MAXNUM]; void Dijkstra(int v0)
{
  bool S[MAXNUM]; // 判断是否已存入该点到S集合中
int n=MAXNUM;
  for(int i=1; i<=n; ++i)
   {
  dist[i] = A[v0][i];
  S[i] = false; // 初始都未用过该点
  if(dist[i] == MAXINT)
  prev[i] = -1;
   else
  prev[i] = v0;
  }
  dist[v0] = 0;
  S[v0] = true;   
   for(int i=2; i<=n; i++)
   {
  int mindist = MAXINT;
  int u = v0;    // 找出当前未使用的点j的dist[j]最小值
   for(int j=1; j<=n; ++j)
   if((!S[j]) && dist[j]<mindist)
   {
   u = j; // u保存当前邻接点中距离最小的点的号码
    mindist = dist[j];
   }
  S[u] = true;
  for(int j=1; j<=n; j++)
   if((!S[j]) && A[u][j]<MAXINT)
   {
   if(dist[u] + A[u][j] < dist[j]) //在通过新加入的u点路径找到离v0点更短的路径
   {
  dist[j] = dist[u] + A[u][j]; //更新dist
  prev[j] = u; //记录前驱顶点
   }
   }
  }
}

4.算法实例

先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

Floyd算法

1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

2.算法描述

1)算法思想原理:

Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算—-十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:


最后A3即为所求结果

3.算法代码实现

typedef struct
{
char vertex[VertexNum]; //顶点表
int edges[VertexNum][VertexNum]; //邻接矩阵,可看做边表
int n,e; //图中当前的顶点数和边数
}MGraph; void Floyd(MGraph g)
{
  int A[MAXV][MAXV];
  int path[MAXV][MAXV];
  int i,j,k,n=g.n;
  for(i=0;i<n;i++)
  for(j=0;j<n;j++)
  {   
A[i][j]=g.edges[i][j];
   path[i][j]=-1;
  }
  for(k=0;k<n;k++)
  {
  for(i=0;i<n;i++)
  for(j=0;j<n;j++)
  if(A[i][j]>(A[i][k]+A[k][j]))
  {
  A[i][j]=A[i][k]+A[k][j];
  path[i][j]=k;
  }
 }
}

算法时间复杂度:O(n3)

本文是转载,原文在:最短路径—Dijkstra算法和Floyd算法

【转】最短路径——Dijkstra算法和Floyd算法的更多相关文章

  1. 最短路径——Dijkstra算法和Floyd算法

    Dijkstra算法概述 Dijkstra算法是由荷兰计算机科学家狄克斯特拉(Dijkstra)于1959 年提出的,因此又叫狄克斯特拉算法.是从一个顶点到其余各顶点的最短路径算法,解决的是有向图(无 ...

  2. 最短路径Dijkstra算法和Floyd算法整理、

    转载自:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最短路径—Dijkstra算法和Floyd算法 Dijks ...

  3. 最短路径—Dijkstra算法和Floyd算法

    原文链接:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html 最后边附有我根据文中Dijkstra算法的描述使用jav ...

  4. 最短路径—Dijkstra算法和Floyd算法【转】

    本文来自博客园的文章:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/31/2615833.html Dijkstra算法 1.定义概览 Dijk ...

  5. 图的最短路径——dijkstra算法和Floyd算法

    dijkstra算法 求某一顶点到其它各个顶点的最短路径:已知某一顶点v0,求它顶点到其它顶点的最短路径,该算法按照最短路径递增的顺序产生一点到其余各顶点的所有最短路径. 对于图G={V,{E}};将 ...

  6. 【转载】最短路径—Dijkstra算法和Floyd算法

    注意:以下代码 只是描述思路,没有测试过!! Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径.主要特点是以起始 ...

  7. 最短路径—Dijkstra 算法和Floyd 算法

    某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过路多了也不好,每次要从一个城镇到另一个城镇时,都有许多种道路方案可以选择,而某些方案要比另一些方案行走的距离要短很多.这让行人很困扰. 现在 ...

  8. 【转载】Dijkstra算法和Floyd算法的正确性证明

      说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ----------- ...

  9. Dijkstra算法和Floyd算法的正确性证明

    说明: 本文仅提供关于两个算法的正确性的证明,不涉及对算法的过程描述和实现细节 本人算法菜鸟一枚,提供的证明仅是自己的思路,不保证正确,仅供参考,若有错误,欢迎拍砖指正   ------------- ...

随机推荐

  1. R语言与医学统计图形-【26】ggplot2主题函数

    ggplot2绘图系统--主题函数 1. theme函数 theme_*系列函数提供了9种不同的风格. theme_grey/gray/bw/linedraw/light/minimal/classi ...

  2. nohup使用

    nohup:不挂断运行 在忽略挂起信号的情况下运行给定的命令,以便在注销后命令可以在后台继续运行. 可以这么理解:不挂断的运行,注意并没有后台运行的功能,就是指,用nohup 运行命令可以是命令永远运 ...

  3. 9. Delete Node in a Linked List

    Write a function to delete a node (except the tail) in a singly linked list, given only access to th ...

  4. 深入了解scanf() getchar()和gets()等函数之间的区别

    scanf(), getchar()等都是标准输入函数,一般人都会觉得这几个函数非常简单,没什么特殊的.但是有时候却就是因为使用这些函数除了问题,却找不出其中的原因.下面先看一个很简单的程序: 程序1 ...

  5. Demo01无重复数字

    package 习题集2;//有1,2,3,4四个数字,能组成多少个互不相同且无重复数字的三位数?都是多少?public class Demo1 { public static void main(S ...

  6. 22 SHELL 获取当前路径

    常见的一种误区,是使用 pwd 命令,该命令的作用是"print name of current/working directory",这才是此命令的真实含义,当前的工作目录,这里 ...

  7. k8s-hpa自动横向扩容

    目录 hpa自动扩容 官方文档 HPA是什么 Horizontal Pod Autoscaler 演练 参数 案例:监控cpu,内存,每秒数据包自动扩容 度量指标 pod清单案例-pod定义cup内存 ...

  8. [PE]结构分析与代码实现

    PE结构浅析 知识导向: 程序最开始是存放在磁盘上的,运行程序首先需要申请4GB的内存,将程序从磁盘copy到内存,但不是直接复制,而是进行拉伸处理. 这也就是为什么会有一个文件中地址和一个Virtu ...

  9. oracle中的数组

    Oracle中的数组分为固定数组和可变数组. 一.固定数组固定数组:在定义的时候预定义了数组的大小,在初始化数组时如果超出这个大小,会提示ORA-06532:超出小标超出限制!语法:        T ...

  10. Java中特殊的类——包装类

    Java中特殊的类--包装类 包装类就是将基本数据类型封装在类中. 1.包装类 (1)自定义包装类 将基本数据类型包装成一个类对象的本质就是使用Object进行接收处理. 此时IntDemo类就是in ...