[NOI2020] 超现实树
我们定义链树为:在该树上的任意节点,左右子树大小的最小值小于2.
举个例子:
那么我们思考,链树显然可以在叶子节点任意替换成其他子树。
那么在主链上,我们可以做到生成任意深度大于主链长度的树。
反过来,一颗任意的树则无法做到,即当一颗树可以生成时,一定有对应的链树存在。
那么我们只在所有树里判断链树即可。
那么我们思考链树有几种状态:
只有右节点
只有左节点
有一个左叶子节点,当前主链为右链。
有一个右叶子节点,当前主链为左链。
我们发现,四种状态的链树,不能互相转换,缺少一种则会存在无限个该形态链树被无法生成。
我们只需要把所有链树合并,维护一颗四叉树并判断即可。
#include<iostream>
#include<cstdio>
#define ll long long
#define N 200005
ll n,m,T,cnt;
int rt;
int ls[N],rs[N],ok[N],chd[N][4];
inline int leaf(int x){
return x != 0 && (ls[x] == 0 ) && (rs[x] == 0);
}
int check(int x){
if(x == 0 || leaf(x))
return 1;
return (check(ls[x])==0&&check(rs[x])==0)? 0:1;
}
inline void merge(int &now,int x){
if(now == 0)
now = ++cnt;
if(leaf(x)){
ok[now] = 1;
return ;
}
if(leaf(ls[x]) && leaf(rs[x])){
merge(chd[now][2],ls[x]);
merge(chd[now][3],rs[x]);
return ;
}
if(ls[x] == 0)
merge(chd[now][1],rs[x]);
if(rs[x] == 0)
merge(chd[now][0],ls[x]);
if(rs[x] && leaf(ls[x]))
merge(chd[now][3],rs[x]);
if(ls[x] && leaf(rs[x]))
merge(chd[now][2],ls[x]);
}
inline bool grow(int x){
if(x == 0)
return 0;
if(ok[x] == 1)
return 1;
return grow(chd[x][0]) && grow(chd[x][1]) && grow(chd[x][2]) && grow(chd[x][3]);
}
int main(){
scanf("%lld",&T);
while(T -- ){
scanf("%lld",&m);
for(int i = 1;i <= m;++i){
scanf("%lld",&n);
for(int j = 1;j <= n;++j){
scanf("%d%d",&ls[j],&rs[j]);
}
if(check(1) == 0)
continue;
merge(rt,1);
}
if(!grow(1))
puts("No");
else
puts("Almost Complete");
for(int i = 1;i <= cnt;++i)
chd[i][0] = chd[i][1] = chd[i][2] = chd[i][3] = ok[i] = 0;
rt = cnt = 0;
}
return 0;
}
[NOI2020] 超现实树的更多相关文章
- 洛谷 P6776 - [NOI2020] 超现实树(找性质,神仙题)
洛谷题面传送门 nb tea 一道! 首先考虑怎样入手分析这个看似非常不可做的问题.首先题目涉及高度无穷的树,根本枚举不了.不过我们冷静一下就会发现,如果我们记 \(mx=\max\limits_{i ...
- [loj3343]超现实树
定义1:两棵树中的$x$和$y$对应当且仅当$x$到根的链与$y$到根的链同构 定义2:$x$和$y$的儿子状态相同当且仅当$x$与儿子所构成的树与$y$与儿子所构成的树同构 根据题中所给的定义,有以 ...
- Solution -「NOI 2020」「洛谷 P6776」超现实树
\(\mathcal{Description}\) Link. 对于非空二叉树 \(T\),定义 \(\operatorname{grow}(T)\) 为所有能通过若干次"替换 \( ...
- NOI2020网上同步赛 游记
Day1 预计得分:\(32pts\)(我裂开了--) T1 美食家 表示考试的时候想到了关于矩阵快速幂的想法,甚至连分段后怎么处理都想好了,但是没有想到拆点,还有不知道怎么处理重边(这个考虑是多余的 ...
- NOI2020 同步赛划水记
因为太菜了没去现场参加 NOI 就算去了估计也只能混个Fe(雾) "两天都会各有一道签到题,争取拿到70分.剩下的题每道题打30分暴力.每天130分,就能稳拿Ag了."--ls D ...
- WC2021 云划水记
Day -38 - 2459208(2020.12.24) CCF 发公告了,线上举办 hopping. 刚看到还纠结了一会儿,但想想还是报了.虽说是去摸鱼,打打暴力分就走人.但毕竟有牌和没牌也是不一 ...
- Solution -「多校联训」朝鲜时蔬
\(\mathcal{Description}\) Link. 破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面. 对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...
- B树——算法导论(25)
B树 1. 简介 在之前我们学习了红黑树,今天再学习一种树--B树.它与红黑树有许多类似的地方,比如都是平衡搜索树,但它们在功能和结构上却有较大的差别. 从功能上看,B树是为磁盘或其他存储设备设计的, ...
- ASP.NET Aries 入门开发教程8:树型列表及自定义右键菜单
前言: 前面几篇重点都在讲普通列表的相关操作. 本篇主要讲树型列表的操作. 框架在设计时,已经把树型列表和普通列表全面统一了操作,用法几乎是一致的. 下面介绍一些差距化的内容: 1:树型列表绑定: v ...
随机推荐
- Mybatis、maven项目中整合log4j (17)
Mybatis.maven项目总整合log4j java 中Mybatis.maven项目总整合log4j 1.pom增加log4j包引用 2.添加 log4j.properties文件 # java ...
- Scrum Meeting 12
第12次例会报告 日期:2021年06月03日 会议主要内容概述: 介绍了现有进度,wpb介绍了jwt的用法以及部署的swagger的测试用法. 一.进度情况 我们采用日报的形式记录每个人的具体进度, ...
- [no code][scrum meeting] Alpha 1
项目 内容 会议时间 2020-04-06 会议主题 团队任务分析与拆解 会议时长 30min 参会人员 全体成员 $( "#cnblogs_post_body" ).catalo ...
- 微信小程序 scroll-view 完成上拉加载更多
我们经常在软件客户端上看到这么一个功能,当我们阅读信息浏览到文章的末尾时,通常会加载出更多的信息.比如,我们在简书客户端上浏览推荐文章时,浏览到屏幕的末尾,此时又加载出了另一页的推荐文章,即实现了上拉 ...
- Spring 5 中函数式web开发中的swagger文档
Spring 5 中一个非常重要的更新就是增加了响应式web开发WebFlux,并且推荐使用函数式风格(RouterFunction和 HandlerFunction)来开发WebFlux.对于之前主 ...
- CSS 奇技淫巧 | 巧妙实现文字二次加粗再加边框
本文将通过一个实际的业务需求,讲解如何实现 极端场景下文字加粗加边框效果 文字多重边框的效果 需求背景 - 文字的二次加粗 今天遇到这样一个有意思的问题: 在文字展示的时候,利用了 font-weig ...
- Noip模拟46 2021.8.23
给了签到题,但除了签到题其他的什么也不会.... T1 数数 人均$AC$,没什么好说的,就是排个序,然后双指针交换着往中间移 1 #include<bits/stdc++.h> 2 #d ...
- 嵌入式单片机stm32之DMA实验
一. 对于大容量的STM32芯片有2个DMA控制器,控制器1有7个通道,控制器2有5个通道 每个通道都可以配置一些外设的地址. 二. 通道的配置过程: 1. 首先设置CPARx寄存器和CMARx寄存器 ...
- 助你上手Vue3全家桶之Vue3教程
目录 前言 1,setup 1.1,返回值 1.2,注意点 1.3,语法 1.4,setup的参数 2,ref 创建响应式数据 3,reactive 创建响应式数据 4,computed 计算属性 5 ...
- linux exit 和 _exit的区别
今天仔细看了一下exit和_exit这两个函数的区别,实际上exit也是调用了_exit退出函数的,只不过在调用_exit之前,exit还进行了一些多余的工作,也正是因为这样,相比起来exit就没有那 ...