对答案序列求一个高维后缀和,再通过差分将其解出,后者复杂度为$o(n2^{n})$

对于求后缀和后的结果,即01序列仅要求1处有边(不要求0处没有边),那么也即要求将原图划分为若干条长度给定且没有公共点的链

不妨先去枚举链的长度,假设为$\{l_{1},l_{2},...,l_{m}\}$,要求满足$l_{1}\le l_{2}\le ...\le l_{m}$且$\sum_{i=1}^{m}l_{i}=n$,记其对应的方案数为$P(n)$即为A000041,也即有$P(18)=385$

下面,问题即要求出对应的方案数,并加到需要贡献的状态上——

状压dp求出$f_{S}$表示$S$中的点构成链的排列数,时间复杂度为$o(n^{2}2^{n})$

构造$g_{i,S}=\begin{cases}0&(|S|\ne i)\\f_{S}&(|S|=i)\end{cases}$,不难发现方案数即为$(\bigcirc_{i=1}^{m}g_{l_{i}})_{V}$(其中$\circ$为或卷积,$V$为点集),先预处理出$g_{i}$做FWT的结果,再$o(2^{n})$求出乘积在$V$处的值,时间复杂度为$o(n^{2}2^{n}+P(n)2^{n})$

对于其有贡献的状态,即将$\{l_{i}\}$重新排列后不同的序列,注意到每一个状态最多统计一次,因此暴力枚举所有排列(不重复)的复杂度也仅为$o(P(n)2^{n})$

综上,总复杂度为$o(n^{2}2^{n}+P(n)2^{n})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N (1<<18)
4 #define L 19
5 #define ll long long
6 vector<int>v;
7 int n,cnt[N],vis[L];
8 ll f[N][L],g[L][N],S[N],SS[L][N],ans[N];
9 char s[L][L];
10 void FWT(ll *a){
11 for(int i=0;i<n;i++)
12 for(int j=0;j<(1<<n);j++)
13 if (j&(1<<i))a[j]+=a[j^(1<<i)];
14 }
15 void get_per(int k,int S,ll s){
16 if (k==v.size()){
17 ans[S]+=s;
18 return;
19 }
20 int lst=0;
21 for(int i=0;i<v.size();i++)
22 if ((!vis[i])&&(lst!=v[i])){
23 vis[i]=1,lst=v[i];
24 get_per(k+1,((S<<v[i])|((1<<v[i]-1)-1)),s);
25 vis[i]=0;
26 }
27 }
28 void dfs(int k,int lst){
29 if (!k){
30 ll s=0;
31 for(int i=0;i<(1<<n);i++)
32 if ((n-cnt[i])&1)s-=S[i];
33 else s+=S[i];
34 get_per(0,0,s);
35 return;
36 }
37 memcpy(SS[k],S,sizeof(S));
38 for(int i=lst;i<=k;i++){
39 v.push_back(i);
40 for(int j=0;j<(1<<n);j++)S[j]*=g[i][j];
41 dfs(k-i,i);
42 v.pop_back();
43 memcpy(S,SS[k],sizeof(S));
44 }
45 }
46 int main(){
47 scanf("%d",&n);
48 for(int i=0;i<n;i++)scanf("%s",s[i]);
49 for(int i=0;i<(1<<n);i++)cnt[i]=cnt[i>>1]+(i&1);
50 for(int i=0;i<n;i++)f[1<<i][i]=1;
51 for(int i=1;i<(1<<n);i++)
52 for(int j=0;j<n;j++)
53 if (i&(1<<j)){
54 g[cnt[i]][i]+=f[i][j];
55 for(int k=0;k<n;k++)
56 if (((i&(1<<k))==0)&&(s[j][k]=='1'))f[i|(1<<k)][k]+=f[i][j];
57 }
58 for(int i=1;i<=n;i++)FWT(g[i]);
59 for(int i=0;i<(1<<n);i++)S[i]=1;
60 dfs(n,1);
61 n--;
62 for(int i=0;i<n;i++)
63 for(int j=0;j<(1<<n);j++)
64 if (j&(1<<i))ans[j^(1<<i)]-=ans[j];
65 for(int i=0;i<(1<<n);i++)printf("%lld ",ans[i]);
66 printf("\n");
67 return 0;
68 }

[cf1326F]Wise Men的更多相关文章

  1. Codeforces 1326F2 - Wise Men (Hard Version)(FWT+整数划分)

    Codeforces 题目传送门 & 洛谷题目传送门 qwq 这题大约是二十来天前 AC 的罢,为何拖到此时才完成这篇题解,由此可见我是个名副其实的大鸽子( 这是我上 M 的那场我没切掉的 F ...

  2. Bible

    001 Love your neighbor as yourself.         要爱人如己.--<旧·利>19:18      002 Resentment kills a foo ...

  3. MFC9.0 Outlook控件的标题显示无法修改

    这是我在开发中遇到的问题,现记录下来,以便帮助你们. 不想看废话的可以只看最后三行,但你会错过很多. 俗话说的好啊,"Wise men learn by other men's mistak ...

  4. Do not go gentle into that good night

    Do not go gentle into that good night By:Dylan Thomas   Do not go gentle into that good night,Old ag ...

  5. MFC9.0 Outlook控件的标题显示无法改动

    这是我在开发中遇到的问题,现记录下来,以便帮助你们. 不想看废话的能够仅仅看最后三行,但你会错过非常多. 俗话说的好啊,"Wise men learn by other men's mist ...

  6. June 7. 2018 Week 23rd Thursday

    Half is worse than none at all. 一知半解比一无所知更痛苦. From Westworld. If we go looking for the truth, get th ...

  7. PMP模拟考试-1

    1. A manufacturing project has a schedule performance index (SPI) of 0.89 and a cost performance ind ...

  8. time is always a factor, time is always now!!!!

    https://www.linkedin.com/pulse/time-always-now-joe-alderman ---------------------------------------- ...

  9. 快速沃尔什变换&快速莫比乌斯变换小记

    u1s1 距离省选只剩 5 days 了,现在学新算法真的合适吗(( 位运算卷积 众所周知,对于最普通的卷积 \(c_i=\sum\limits_{j+k=i}a_jb_k\),\(a_jb_k\) ...

随机推荐

  1. ArcPy数据列表遍历

    ArcPy数据列表遍历 批处理脚本的首要任务之一是为可用数据编写目录,以便在处理过程中可以遍历数据. ArcPy 具有多个专为创建此类列表而构建的函数. 函数 说明 ListFields(datase ...

  2. 后台管理系统使用vue-element-admin搭建

    近期在搞一个会议健康申报系统时,要搞一个后台,用到了vue-element-admin模板,使用的是PanJianChen(源码地址:https://github.com/PanJiaChen/vue ...

  3. Redis:学习笔记-02

    Redis:学习笔记-02 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 4. 事物 Redis 事务本 ...

  4. Java基础-Java8新特性

    一.Lambda表达式 在了解 Lambda 之前,首先回顾以下Java的方法. Java的方法分为实例方法,例如:Integer的equals()方法: public final class Int ...

  5. 简明教程 | Docker篇 · 其二:Dockerfile的编写

    Dockerfile是什么 一个包含用于组合 image 的命令的文本文件,docker 通过 dockerfile 和构建环境的上下文来构建 image . 编写Dockerfile FROM 首先 ...

  6. 2021.7.15考试总结[NOIP模拟16]

    ZJ模拟D2就是NB.. T1 Star Way To Heaven 谁能想到这竟是个最小生成树呢?(T1挂分100的高人JYF就在我身边 把上边界和下边界看成一个点和星星跑最小生成树,从上边界开始跑 ...

  7. 字符串与模式匹配算法(一):BF算法

    一.BF算法的基本思想 BF(Brute Force)算法是模式匹配中最简单.最直观的算法.该算法最基本的思想是从主串的第 start 个字符起和模式P(要检索的子串)的第1个字符比较,如果相等,则逐 ...

  8. (转)Linux中的文件描述符与打开文件之间的关系

    转:http://blog.csdn.net/cywosp/article/details/38965239 1. 概述     在Linux系统中一切皆可以看成是文件,文件又可分为:普通文件.目录文 ...

  9. Java 中 List 分片的 5 种方法!

    前些天在实现 MyBatis 批量插入时遇到了一个问题,当批量插入的数据量比较大时,会导致程序执行报错,如下图所示: 原因是 MySQL 只能执行一定长度的 SQL 语句,但当插入的数据量较多时,会生 ...

  10. Java 网络编程 - 总结概述

    IP地址 IP地址IntAddress 唯一定位一台网络上的计算机 127.0.0.1:本地localhost IP地址的分类 ipV4/ipV6 ipV4:127.0.0.1,4个字节组成:0~25 ...