对答案序列求一个高维后缀和,再通过差分将其解出,后者复杂度为$o(n2^{n})$

对于求后缀和后的结果,即01序列仅要求1处有边(不要求0处没有边),那么也即要求将原图划分为若干条长度给定且没有公共点的链

不妨先去枚举链的长度,假设为$\{l_{1},l_{2},...,l_{m}\}$,要求满足$l_{1}\le l_{2}\le ...\le l_{m}$且$\sum_{i=1}^{m}l_{i}=n$,记其对应的方案数为$P(n)$即为A000041,也即有$P(18)=385$

下面,问题即要求出对应的方案数,并加到需要贡献的状态上——

状压dp求出$f_{S}$表示$S$中的点构成链的排列数,时间复杂度为$o(n^{2}2^{n})$

构造$g_{i,S}=\begin{cases}0&(|S|\ne i)\\f_{S}&(|S|=i)\end{cases}$,不难发现方案数即为$(\bigcirc_{i=1}^{m}g_{l_{i}})_{V}$(其中$\circ$为或卷积,$V$为点集),先预处理出$g_{i}$做FWT的结果,再$o(2^{n})$求出乘积在$V$处的值,时间复杂度为$o(n^{2}2^{n}+P(n)2^{n})$

对于其有贡献的状态,即将$\{l_{i}\}$重新排列后不同的序列,注意到每一个状态最多统计一次,因此暴力枚举所有排列(不重复)的复杂度也仅为$o(P(n)2^{n})$

综上,总复杂度为$o(n^{2}2^{n}+P(n)2^{n})$,可以通过

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N (1<<18)
4 #define L 19
5 #define ll long long
6 vector<int>v;
7 int n,cnt[N],vis[L];
8 ll f[N][L],g[L][N],S[N],SS[L][N],ans[N];
9 char s[L][L];
10 void FWT(ll *a){
11 for(int i=0;i<n;i++)
12 for(int j=0;j<(1<<n);j++)
13 if (j&(1<<i))a[j]+=a[j^(1<<i)];
14 }
15 void get_per(int k,int S,ll s){
16 if (k==v.size()){
17 ans[S]+=s;
18 return;
19 }
20 int lst=0;
21 for(int i=0;i<v.size();i++)
22 if ((!vis[i])&&(lst!=v[i])){
23 vis[i]=1,lst=v[i];
24 get_per(k+1,((S<<v[i])|((1<<v[i]-1)-1)),s);
25 vis[i]=0;
26 }
27 }
28 void dfs(int k,int lst){
29 if (!k){
30 ll s=0;
31 for(int i=0;i<(1<<n);i++)
32 if ((n-cnt[i])&1)s-=S[i];
33 else s+=S[i];
34 get_per(0,0,s);
35 return;
36 }
37 memcpy(SS[k],S,sizeof(S));
38 for(int i=lst;i<=k;i++){
39 v.push_back(i);
40 for(int j=0;j<(1<<n);j++)S[j]*=g[i][j];
41 dfs(k-i,i);
42 v.pop_back();
43 memcpy(S,SS[k],sizeof(S));
44 }
45 }
46 int main(){
47 scanf("%d",&n);
48 for(int i=0;i<n;i++)scanf("%s",s[i]);
49 for(int i=0;i<(1<<n);i++)cnt[i]=cnt[i>>1]+(i&1);
50 for(int i=0;i<n;i++)f[1<<i][i]=1;
51 for(int i=1;i<(1<<n);i++)
52 for(int j=0;j<n;j++)
53 if (i&(1<<j)){
54 g[cnt[i]][i]+=f[i][j];
55 for(int k=0;k<n;k++)
56 if (((i&(1<<k))==0)&&(s[j][k]=='1'))f[i|(1<<k)][k]+=f[i][j];
57 }
58 for(int i=1;i<=n;i++)FWT(g[i]);
59 for(int i=0;i<(1<<n);i++)S[i]=1;
60 dfs(n,1);
61 n--;
62 for(int i=0;i<n;i++)
63 for(int j=0;j<(1<<n);j++)
64 if (j&(1<<i))ans[j^(1<<i)]-=ans[j];
65 for(int i=0;i<(1<<n);i++)printf("%lld ",ans[i]);
66 printf("\n");
67 return 0;
68 }

[cf1326F]Wise Men的更多相关文章

  1. Codeforces 1326F2 - Wise Men (Hard Version)(FWT+整数划分)

    Codeforces 题目传送门 & 洛谷题目传送门 qwq 这题大约是二十来天前 AC 的罢,为何拖到此时才完成这篇题解,由此可见我是个名副其实的大鸽子( 这是我上 M 的那场我没切掉的 F ...

  2. Bible

    001 Love your neighbor as yourself.         要爱人如己.--<旧·利>19:18      002 Resentment kills a foo ...

  3. MFC9.0 Outlook控件的标题显示无法修改

    这是我在开发中遇到的问题,现记录下来,以便帮助你们. 不想看废话的可以只看最后三行,但你会错过很多. 俗话说的好啊,"Wise men learn by other men's mistak ...

  4. Do not go gentle into that good night

    Do not go gentle into that good night By:Dylan Thomas   Do not go gentle into that good night,Old ag ...

  5. MFC9.0 Outlook控件的标题显示无法改动

    这是我在开发中遇到的问题,现记录下来,以便帮助你们. 不想看废话的能够仅仅看最后三行,但你会错过非常多. 俗话说的好啊,"Wise men learn by other men's mist ...

  6. June 7. 2018 Week 23rd Thursday

    Half is worse than none at all. 一知半解比一无所知更痛苦. From Westworld. If we go looking for the truth, get th ...

  7. PMP模拟考试-1

    1. A manufacturing project has a schedule performance index (SPI) of 0.89 and a cost performance ind ...

  8. time is always a factor, time is always now!!!!

    https://www.linkedin.com/pulse/time-always-now-joe-alderman ---------------------------------------- ...

  9. 快速沃尔什变换&快速莫比乌斯变换小记

    u1s1 距离省选只剩 5 days 了,现在学新算法真的合适吗(( 位运算卷积 众所周知,对于最普通的卷积 \(c_i=\sum\limits_{j+k=i}a_jb_k\),\(a_jb_k\) ...

随机推荐

  1. Java初步学习——2021.09.23每日报告,第三周周四

    (1)今天做了什么: (2)明天准备做什么? (3)遇到的问题,如何解决? 学习数组,编写了一个随机选牌的代码.自己最开始一直想只设置一个字符串数组,利用随机数来输出,但那样对字符串赋值会比较麻烦.可 ...

  2. 洛谷3244 落忆枫音 (拓扑图dp+式子)

    题目大意就是 给你一个DAG 然后添加一条边\(x->y\) ,询问以1为根的生成树的个数 QWQ 首先假设没有添加的边 答案就应该是 \[ans=\prod_{i=1}^{n} in[i] \ ...

  3. SoapUI入门实例

    一.Soapui介绍 WSDL(Web Services Description Language)就是这样一个基于XML的语言,用于描述Web Service及其函数.参数和返回值.它是WebSer ...

  4. mysql order by语句流程是怎么样的

    order by流程是怎么样的 注意点: select id, name,age,city from t1 where city='杭州' order by age limit 1000; order ...

  5. 分享一份软件测试项目实战(web+app+h5+小程序)

    大家好,我是谭叔. 本次,谭叔再度出马,给大家找了一个非常适合练手的软件测试项目,此项目涵盖web端.app端.h5端.小程序端,可以说非常之全面. 缘起 在这之前,谭叔已经推出了九套实战教程. 但是 ...

  6. Shadertoy 教程 Part 1 - 介绍

    Note: This series blog was translated from Nathan Vaughn's Shaders Language Tutorial and has been au ...

  7. 【UE4 C++】碰撞检测与事件绑定

    概念 碰撞对象通道与预设 默认提供碰撞对象类型,如 WorldStatic.WorldDynamic等.允许用户自定义 默认提供碰撞预设,如 NoCollision.BloackAll.Overlap ...

  8. Sequence Model-week1编程题1(一步步实现RNN与LSTM)

    一步步搭建循环神经网络 将在numpy中实现一个循环神经网络 Recurrent Neural Networks (RNN) are very effective for Natural Langua ...

  9. LeetCode:并查集

    并查集 这部分主要是学习了 labuladong 公众号中对于并查集的讲解,文章链接如下: Union-Find 并查集算法详解 Union-Find 算法怎么应用? 概述 并查集用于解决图论中「动态 ...

  10. STM32 禁用或开启总中断

    今天把之前自己的一些在中断方面所产生的疑惑把具体的解决办法给大家分享一下,希望能够帮到大家. STM32在使用时有时需要禁用全局中断,比如MCU在升级过程中需禁用外部中断,防止升级过程中外部中断触发导 ...