Hyv"{a}rinen A. Estimation of Non-Normalized Statistical Models by Score Matching. Journal of Machine Learning Research, 2005.

我们常常会建模如下的概率模型:

\[p(\xi;\theta) = \frac{1}{Z(\theta)} q(\xi; \theta).
\]

比如energy-based models.

上述问题一般来说用极大似然不易求解, 因为

\[Z(\theta) = \int_{\xi} q(\xi;\theta) \mathrm{d}\xi,
\]

常常不易估计(特别是高维的情形, 用MCMC是致命的).

所以倘若能够抛开\(Z(\theta)\)就能估计参数就好了, 本文就是提出了这个一个方法(虽然要求二阶导, 倘若用梯度方法求解便是需要三阶偏导了.)

我发现这个人也是噪声对比估计(负样本采样)的作者之一.

主要内容

方法

\[\psi(\xi;\theta) =
\left (
\begin{array}{cc}
\frac{\partial \log p(\xi;\theta)}{\partial \xi_1} \\
\vdots \\
\frac{\partial \log p(\xi;\theta)}{\partial \xi_n} \\
\end{array}
\right )
=\left (
\begin{array}{cc}
\psi_1(\xi;\theta) \\
\vdots \\
\psi_n(\xi;\theta) \\
\end{array}
\right )
=\nabla_{\xi} \log p(\xi;\theta),
\]

并令

\[\psi_x(\xi) = \nabla_{\xi} \log p_x(\xi),
\]

其中\(p_x(\xi)\)表示数据真实的分布.

最小化下列损失能够保证\(p(\xi;\theta)\)逼近\(p_x(\xi)\):

\[J(\theta) = \frac{1}{2} \int_{\xi \in \mathbb{R}^n} p_x(\xi) \| \psi(\xi;\theta) - \psi_{x}(\xi) \|^2 d\xi.
\]

损失函数的转换

显然

\[\psi_x(\xi) = \nabla_{\xi} \log p_x(\xi),
\]

设及真实分布, 不易求解, 但是通过对损失函数的转换, 我们发现其与真实分布并没有大的联系.

\[\nabla_{\xi} \log p_x(\xi) = \frac{\nabla p_x(\xi)}{p_x(\xi)}, \\
\psi(\xi;\theta) = \nabla_{\xi} \log p(\xi;\theta) = \nabla_{\xi} \log q (\xi;\theta).
\]
\[\| \psi(\xi;\theta) - \psi_{x}(\xi) \|^2
=\|\psi(\xi;\theta)\|^2 - 2\psi^T(\xi;\theta) \psi_x(\xi) + \|\psi_x(\xi)\|^2,
\]

第一项与\(p_x\)无关, 最后一项与\(\theta\)无关, 故只需考虑第二项:

\[\psi^T(\xi;\theta)\psi_x(\xi) = \sum_{i=1}^n \psi_{i}\psi_{x,i}
= \sum_{i=1}^n \psi_{i}\frac{1}{p_x(\xi)} \frac{\partial p_x(\xi)}{\partial \xi_i},
\]

\[\begin{array}{ll}
\int p_x(\xi) \psi^T(\xi;\theta)\psi_x(\xi) \mathrm{d}\xi
&=\int \sum_{i=1}^n \psi_{i}\frac{\partial p_x(\xi)}{\partial \xi_i} \mathrm{d}\xi \\
&=\sum_{i=1}^n \int \psi_{i}\frac{\partial p_x(\xi)}{\partial \xi_i} \mathrm{d}\xi \\
&=\sum_{i=1}^n \int \psi_{i}p_x(\xi)|_{\xi_i=-\infty}^{\xi_i=+\infty} \mathrm{d}\xi_{\setminus i} - \int p_x(\xi) \frac{\partial \psi_i}{\partial \xi_i} \mathrm{d}\xi.\\
&=-\sum_{i=1}^n \int p_x(\xi) \frac{\partial \psi_i}{\partial \xi_i} \mathrm{d}\xi.
\end{array}
\]

故:

\[J(\theta) = \sum_{i=1}^n\int_{\xi} p_x(\xi) [\frac{1}{2}(\frac{\partial q(\xi;\theta)}{\partial \xi_i})^2+ \frac{\partial^2 \log q(\xi;\theta)}{\partial^2 \xi_i}] \mathrm{d}\xi + \text{ const }.
\]

故我们可以用如下损失近似:

\[\hat{J}(\theta) = \frac{1}{2}\sum_{t=1}^T \sum_{i=1}^n [\partial_i \psi_i(x(t); \theta) + \frac{1}{2} \psi_i(\xi;\theta)^2].
\]

注: 上述证明需要用到如下条件:

  1. \(p_x(\xi), \psi(\xi;\theta)\)可微;
  2. \(p_x(\xi) \psi(\xi;\theta) \rightarrow 0, \text{ if } \|\xi\| \rightarrow +\infty\).

一个例子

考虑多为正态分布:

\[p(x;\mu, M) = \frac{1}{Z(\mu, M)} \exp (-\frac{1}{2}(x-\mu)^2 M(x-\mu)),
\]

此时\(\hat{J}\)存在显示解, 且恰为:

\[\mu^* = \frac{1}{T}\sum_{t=1}^T x(t), \\
M^* = [\frac{1}{T}\sum_{t=1}^T (x(t) - \mu^*) (x(t) - \mu^*)^T]^{-1},
\]

为极大似然估计的解.

Estimation of Non-Normalized Statistical Models by Score Matching的更多相关文章

  1. Statistical Models and Social Science

    1.1 Statistical Models and Social Reality KEY: complex society v.s statistical models relationship,d ...

  2. 2.6. Statistical Models, Supervised Learning and Function Approximation

    Statical model regression $y_i=f_{\theta}(x_i)+\epsilon_i,E(\epsilon)=0$ 1.$\epsilon\sim N(0,\sigma^ ...

  3. My deep learning reading list

    My deep learning reading list 主要是顺着Bengio的PAMI review的文章找出来的.包括几本综述文章,将近100篇论文,各位山头们的Presentation.全部 ...

  4. Deep Learning关于Vision的Reading List

    最近开始学习深度学习了,加油! 下文转载自:http://blog.sina.com.cn/s/blog_bda0d2f10101fpp4.html 主要是顺着Bengio的PAMI review的文 ...

  5. NCE损失(Noise-Constrastive Estimation Loss)

    1.算法概述 假设X是从真实的数据(或语料库)中抽取的样本,其服从一个相对可参考的概率密度函数P(d),噪音样本Y服从概率密度函数为P(n),噪音对比估计(NCE)就是通过学习一个分类器把这两类样本区 ...

  6. Tensorflow.nn 核心模块详解

    看过前面的例子,会发现实现深度神经网络需要使用 tensorflow.nn 这个核心模块.我们通过源码来一探究竟. # Copyright 2015 Google Inc. All Rights Re ...

  7. Data - Tools

    数据工具汇总 史上最全的大数据分析和制作工具 全球100款大数据工具汇总 SQL 数据分析常用语句 01 - NumPy HomePage:http://www.numpy.org/ NumPy(数值 ...

  8. 使用movielens数据集动手实现youtube推荐候选集生成

    综述 之前在博客中总结过nce损失和YouTuBe DNN推荐;但大多都还是停留在理论层面,没有实践经验.所以笔者想借由此文继续深入探索YouTuBe DNN推荐,另外也进一步总结TensorFlow ...

  9. Noise Contrastive Estimation

    Notes from Notes on Noise Contrastive Estimation and Negative Sampling one sample: \[x_i \to [y_i^0, ...

随机推荐

  1. Spark基础:(七)Spark Streaming入门

    介绍 1.是spark core的扩展,针对实时数据流处理,具有可扩展.高吞吐量.容错. 数据可以是来自于kafka,flume,tcpsocket,使用高级函数(map reduce filter ...

  2. 【并发编程】Java并发编程-看懂AQS的前世今生

    在我们可以深入学习AbstractQueuedSynchronizer(AQS)之前,必须具备了volatile.CAS和模板方法设计模式的知识,本文主要想从AQS的产生背景.设计和结构.源代码实现及 ...

  3. javaIO——输入输出流

    字节流与字符流 File类不支持对文件内容进行相关的操作,所有若要处理文件的内容,则需要通过流操作模式来完成. 流的基本操作步骤: Step1:根据文件路径创建File类对象. Step2:根据字节流 ...

  4. [项目总结]Android 手动显示和隐藏软键盘

    1.方法一(如果输入法在窗口上已经显示,则隐藏,反之则显示) 1 InputMethodManager imm = (InputMethodManager) getSystemService(Cont ...

  5. URL+http协议

  6. alert之后才执行

    如果在正常情况下,代码要在alert之后才执行,解决办法:将要执行的代码用setTimeout延迟执行即可(原因:页面未加载完毕)

  7. shell脚本采集系统cpu、内存、磁盘、网络信息

    有不少朋友不知道如何用shell脚本采集linux系统相关信息,包括cpu.内存.磁盘.网络等信息,这里脚本小编做下讲解,大家一起来看看吧. 一.cpu信息采集 1),采集cpu使用率采集算法:通过/ ...

  8. Apache Log4j2远程代码执行漏洞攻击,华为云安全支持检测拦截

    近日,华为云安全团队关注到Apache Log4j2 的远程代码执行最新漏洞.Apache Log4j2是一款业界广泛使用的基于Java的日志工具,该组件使用范围广泛,利用门槛低,漏洞危害极大.华为云 ...

  9. 【简】题解 AWSL090429 【价值】

    先考虑当要选的物品一定时 显然有个贪心 wi越小的要越先选 所以先按wi从小到大拍序 因为发现正着递推要记录的状态很多 并且wi的贡献与后面选了几个物品有关 考虑正难则反 倒着递推 提前计算wi的贡献 ...

  10. SOUI3界面编辑器使用说明

    SOUI一直没有官方的界面编辑器,关键是我自己一直坚持手写界面更好控制. 大概是2年前,网友"指尖"开发了一个SOUI2的编辑器,功能非常多,特点是可以拖动控件来实现可视化布局. ...