[Box] Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint
@article{cyr2019robust,
title={Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint.},
author={Cyr, Eric C and Gulian, Mamikon and Patel, Ravi G and Perego, Mauro and Trask, Nathaniel},
journal={arXiv: Learning},
year={2019}}
概
这篇文章介绍了一种梯度下降的改进, 以及Box参数初始化方法.
主要内容

\arg \min_{\xi^L \xi^H} \sum_{k=1}^K \epsilon_k \|\mathcal{L}_k[u] - \sum_i \xi_i^L \mathcal{L}_k [\Phi_i(x, \xi^H)]\|^2_{\ell_2(\mathcal{X}_k)}.
\]
LSGD
固定\(\xi^H, \mathcal{X}_k\), 并令\(\epsilon_k=1\), 则问题(6)退化为一个最小二乘问题
\]
其中\(b_i = \mathcal{L}[u](x_i)\), \(A_{ij}=\mathcal{L} [\Phi_j (x_i, \xi^H)]\), \(x_i \in \mathcal{X}, i=1,\ldots, N, j=1, \ldots, w\).
所以算法如下

Box 初始化
该算法期望使得feature-rich,但是我不知道这个rich从何而来.
假设第\(l\)层的输入为\(x \in \mathbb{R}^{d_1}\), 输出为\(y \in \mathbb{R}^{d_2}\), 则该层的权重矩阵\(W \in \mathbb{R}^{d_2 \times d_1}\). 我们逐行地定义\(W\):
- 采样\(p\), \(p\sim U[0 ,1]^{d_1}\);
- 采样\(n\), \(n \sim \mathcal{N}(0,I_{d_1})\), 并令\(n=n/\|n\|\);
- 求参数\(k\)使得
\]
- \(W\)第\(i\)行\(w_i=kn^T\), \(b_i=-kp \cdot n\).
其中\(\sigma\)表示激活函数, 文中指的是ReLU.
求解参数\(k\):
- \(p_{max} = \max (0, \mathrm{sign}(n))\);
- \(k=\frac{1}{(p_{max}-p) \cdot n}\)
此\(k\)即为所需\(k\), 只需证明\(p_{max}\)是最大化
\]
的解. 最大化上式, 可以分解为
\]
故\(x_i = \max(0, \mathrm{sign}(n_i))\).
这个初始化有什么好处呢, 可以发现, 输入\(x \in[0,1]^{d_1}\)满足, 则输出\(y \in [0, 1]^{d_2}\), 保证二者的"值域"范围一致, 以此类推整个网络节点值范围近似.

如果, 作者构建了一个2-2-2-2-2-2-2-2的网络, 可以发现, Xavier 和 Kaiming的初始化方法经过一定层数后, 就会塌缩在某个点, 而Box初始化方法能够缓解这一现象.
下面是文中列出的算法(与这里的符号有一点点不同, 另外\(b\)作者应该是遗漏了负号).

Box for Resnet
因为Resnet特殊的结构,
\]
假设\(x \in [0,m]^{d_1}\), 则:
- 采样\(p\), \(p\sim U[0 ,m]^{d_1}\);
- 采样\(n\), \(n \sim \mathcal{N}(0,I_{d_1})\), 并令\(n=n/\|n\|\);
- 求参数\(k\)使得
\]
- \(W\)第\(i\)行\(w_i=kn^T\), \(b_i=-kp \cdot n\).
\]
若第一层输入\(x_i \in [0,1]\), 去\(\delta=1/L\), 其中\(L\)为总的层数, 则
\]

代码
'''
initialization.py
'''
import torch
import torch.nn as nn
import warnings
def generate(size, m, delta):
p = torch.rand(size) * m
n = torch.randn(size)
temp = 1 / torch.norm(n, p=2, dim=1, keepdim=True)
n = temp * n
pmax = nn.functional.relu(torch.sign(n)) * m
temp = (pmax - p) * n
k = (m * delta) / temp.sum(dim=1, keepdim=True)
w = k * n
b = -(w * p).sum(dim=1)
return w, b
def box_init(module, m=1, delta=1):
if isinstance(module, nn.Linear):
w, b = generate(module.weight.shape, m, delta)
try:
module.weight.data = w
module.bias.data = b
except AttributeError as e:
s = "Error: \n" + str(e) + "\n stops the initialization" \
" for this module: {}".format(module)
warnings.warn(s)
elif isinstance(module, nn.Conv2d):
outc, inc, h, w = module.weight.size()
w, b = generate((outc, inc * h * w), m, delta)
try:
module.weight.data = w.reshape(module.weight.size())
module.bias.data = b
except AttributeError as e:
s = "Error: \n" + str(e) + "\n stops the initialization" \
" for this module: {}".format(module)
warnings.warn(s)
else:
pass
"""config.py"""
nums = 10
layers = 6
method = "kaiming" #box/xavier/kaiming
net = "Net" #Net/ResNet
"""
测试
"""
import torch
import torch.nn as nn
import config
from initialization import box_init
class Net(nn.Module):
def __init__(self, l):
super(Net, self).__init__()
self.linears = []
for i in range(l):
name = "linear" + str(i)
self.__setattr__(name, nn.Sequential(nn.Linear(2, 2),
nn.ReLU()))
self.linears.append(self.__getattr__(name))
if config.method == 'box':
self.box_init()
elif config.method == "xavier":
self.xavier_init()
else:
self.kaiming_init()
def box_init(self):
for module in self.modules():
box_init(module)
def xavier_init(self):
for module in self.modules():
if isinstance(module, (nn.Conv2d, nn.Linear)):
nn.init.xavier_normal_(module.weight)
def kaiming_init(self):
for module in self.modules():
if isinstance(module, (nn.Conv2d, nn.Linear)):
nn.init.kaiming_normal_(module.weight)
def forward(self, x):
out = []
temp = x
for linear in self.linears:
temp = linear(temp)
out.append(temp)
return out
class ResNet(nn.Module):
def __init__(self, l):
super(ResNet, self).__init__()
self.linears = []
for i in range(l):
name = "linear" + str(i)
self.__setattr__(name, nn.Sequential(nn.Linear(2, 2),
nn.ReLU()))
self.linears.append(self.__getattr__(name))
if config.method == 'box':
self.box_init(l)
elif config.method == "xavier":
self.xavier_init()
else:
self.kaiming_init()
def box_init(self, layers):
delta = 1 / layers
m = 1. + delta
l = 0
for module in self.modules():
if isinstance(module, (nn.Linear)):
if l == 0:
box_init(module, 1, 1)
else:
box_init(module, m ** l, delta)
l += 1
def xavier_init(self):
for module in self.modules():
if isinstance(module, (nn.Conv2d, nn.Linear)):
nn.init.xavier_normal_(module.weight)
def kaiming_init(self):
for module in self.modules():
if isinstance(module, (nn.Conv2d, nn.Linear)):
nn.init.kaiming_normal_(module.weight)
def forward(self, x):
out = []
temp = x
for linear in self.linears:
temp = linear(temp) + temp
out.append(temp)
return out
if config.net == "Net":
net = Net(config.layers)
else:
net = ResNet(config.layers)
x = torch.linspace(0, 1, config.nums)
y = torch.linspace(0, 1, config.nums)
grid_x, grid_y = torch.meshgrid(x, y)
x = grid_x.flatten()
y = grid_y.flatten()
data = torch.stack((x, y), dim=1)
outs = net(data)
import matplotlib.pyplot as plt
def axplot(x, y, ax):
x = x.detach().numpy()
y = y.detach().numpy()
ax.scatter(x, y)
def plot(x, y, outs):
fig, axs = plt.subplots(1, config.layers+1, sharey=True, figsize=(12, 2))
axs[0].scatter(x, y)
axs[0].set(title="layer0")
for i in range(config.layers):
ax = axs[i+1]
out = outs[i]
x = out[:, 0]
y = out[:, 1]
axplot(x, y, ax)
ax.set(title="layer"+str(i+1))
plt.tight_layout()
plt.savefig("C:/Users/pkavs/Desktop/fig.png")
#plt.show()
plot(x, y, outs)
[Box] Robust Training and Initialization of Deep Neural Networks: An Adaptive Basis Viewpoint的更多相关文章
- Training Deep Neural Networks
http://handong1587.github.io/deep_learning/2015/10/09/training-dnn.html //转载于 Training Deep Neural ...
- Coursera Deep Learning 2 Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization - week1, Assignment(Initialization)
声明:所有内容来自coursera,作为个人学习笔记记录在这里. Initialization Welcome to the first assignment of "Improving D ...
- Training (deep) Neural Networks Part: 1
Training (deep) Neural Networks Part: 1 Nowadays training deep learning models have become extremely ...
- Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
目录 概 主要内容 深度 宽度 代码 Huang H., Wang Y., Erfani S., Gu Q., Bailey J. and Ma X. Exploring architectural ...
- [C4] Andrew Ng - Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization
About this Course This course will teach you the "magic" of getting deep learning to work ...
- (转)Understanding, generalisation, and transfer learning in deep neural networks
Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017 Thi ...
- On Explainability of Deep Neural Networks
On Explainability of Deep Neural Networks « Learning F# Functional Data Structures and Algorithms is ...
- Classifying plankton with deep neural networks
Classifying plankton with deep neural networks The National Data Science Bowl, a data science compet ...
- Must Know Tips/Tricks in Deep Neural Networks
Must Know Tips/Tricks in Deep Neural Networks (by Xiu-Shen Wei) Deep Neural Networks, especially C ...
随机推荐
- aboard, abolish
aboard board做动词有上车/船/飞机的意思,boarding就是正在上.board做名词有板的意思,车厢地板的板. a是个词根,有三种意思:1. 以某种状态或方式,如: ablaze, af ...
- apostrophe
apostrophe 者,', 0x27, 十进制39,ASCII里的single quote (单引号) 也.one of the 'inverted commas'. 在书写上可以表示所有格.省略 ...
- 大数据学习day19-----spark02-------0 零碎知识点(分区,分区和分区器的区别) 1. RDD的使用(RDD的概念,特点,创建rdd的方式以及常见rdd的算子) 2.Spark中的一些重要概念
0. 零碎概念 (1) 这个有点疑惑,有可能是错误的. (2) 此处就算地址写错了也不会报错,因为此操作只是读取数据的操作(元数据),表示从此地址读取数据但并没有进行读取数据的操作 (3)分区(有时间 ...
- 【区间dp】- P1880 [NOI1995] 石子合并
记录一下第一道ac的区间dp 题目:P1880 [NOI1995] 石子合并 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 代码: #include <iostream> ...
- Android 高级UI组件(三)
一.popupWindow 1.AlertDialog和PopupWindow最关键的区别是AlertDialog不能指定显示位置,只能默认显示在屏幕最中间(当然也可以通过设置WindowManage ...
- @FeignClient同一个name,多个配置类的解决方案
概述 我使用的spring-cloud-starter-openfeign的版本是2.0.0,然后使用@FeignClient的时候是不能一个name多个配置类的,后来也是从网络查找了各种网友的方 ...
- SpringBoot(4):整合Mybatis
1. 导入mybatis所需要的依赖 1 <!-- 引入 myBatis,这是 MyBatis官方提供的适配 Spring Boot的--> 2 <dependency> 3 ...
- 【编程思想】【设计模式】【结构模式Structural】MVC
Python版 https://github.com/faif/python-patterns/blob/master/structural/mvc.py #!/usr/bin/env python ...
- Docker常用image
MySQL Start a mysql server instance Starting a MySQL instance is simple: docker run -itd --name mysq ...
- 莫烦python教程学习笔记——learn_curve曲线用于过拟合问题
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: ht ...