PyTorch 自动微分示例
PyTorch 自动微分示例
autograd 包是 PyTorch 中所有神经网络的核心。首先简要地介绍,然后训练第一个神经网络。autograd 软件包为 Tensors 上的所有算子提供自动微分。这是一个由运行定义的框架,以代码运行方式定义后向传播,并且每次迭代都可以不同。从 tensor 和 gradients 来举一些例子。
1、TENSOR
torch.Tensor 是包的核心类。如果将其属性 .requires_grad 设置为 True,则会开始跟踪针对 tensor 的所有操作。完成计算后,可以调用 .backward() 来自动计算所有梯度。该张量的梯度将累积到 .grad 属性中。
要停止 tensor 历史记录的跟踪,可以调用 .detach(),将其与计算历史记录分离,防止将来的计算被跟踪。
要停止跟踪历史记录(和使用内存),还可以将代码块使用 with torch.no_grad(): 包装起来。在评估模型时,这是特别有用,因为模型在训练阶段具有 requires_grad = True ,可训练参数有利于调参,但在评估阶段不需要梯度。
还有一个类对于 autograd 实现非常重要那就是 Function。Tensor 和 Function 互相连接并构建一个非循环图,保存整个完整的计算过程的历史信息。每个张量都有一个 .grad_fn 属性,保存着创建了张量的 Function 的引用,(如果用户自己创建张量,则g rad_fn 是 None )。
如果想计算导数,可以调用 Tensor.backward()。如果 Tensor 是标量(即包含一个元素数据),则不需要指定任何参数backward(),如果有更多元素,则需要指定一个gradient 参数来指定张量的形状。
import torch
创建一个张量,设置 requires_grad=True 来跟踪相关的计算
x = torch.ones(2, 2, requires_grad=True)
print(x)
输出:
tensor([[1., 1.],
[1., 1.]], requires_grad=True)
针对张量做一个操作
y = x + 2
print(y)
输出:
tensor([[3., 3.],
[3., 3.]], grad_fn=<AddBackward0>)
y 作为操作的结果被创建,所以它有 grad_fn
print(y.grad_fn)
输出:
<AddBackward0 object at 0x7fe1db427470>
针对 y 做更多的操作:
z = y * y * 3
out = z.mean()
print(z, out)
输出:
tensor([[27., 27.],
[27., 27.]], grad_fn=<MulBackward0>)
tensor(27., grad_fn=<MeanBackward0>)
.requires_grad_( ... ) 会改变张量的 requires_grad 标记。输入的标记默认为 False ,如果没有提供相应的参数。
a = torch.randn(2, 2)
a = ((a * 3) / (a - 1))
print(a.requires_grad)
a.requires_grad_(True)
print(a.requires_grad)
b = (a * a).sum()
print(b.grad_fn)
输出:
False
True
<SumBackward0 object at 0x7fe1db427dd8>
梯度:
现在后向传播,因为输出包含了一个标量,out.backward() 等同于out.backward(torch.tensor(1.))。
out.backward()
打印梯度 d(out)/dx
print(x.grad)
输出:
tensor([[4.5000, 4.5000],
[4.5000, 4.5000]])
原理解释:

看一个雅可比向量积的例子:
x = torch.randn(3, requires_grad=True)
y = x * 2
while y.data.norm() < 1000:
y = y * 2
print(y)
输出:
tensor([ -444.6791, 762.9810, -1690.0941], grad_fn=<MulBackward0>)
在这种情况下,y 不再是一个标量。torch.autograd 不能够直接计算整个雅可比,但是如果想要雅可比向量积,需要简单的传递向量给 backward 作为参数。
v = torch.tensor([0.1, 1.0, 0.0001], dtype=torch.float)
y.backward(v)
print(x.grad)
输出:
tensor([1.0240e+02, 1.0240e+03, 1.0240e-01])
可以通过将代码包裹在 with torch.no_grad(),来停止对从跟踪历史中 的 .requires_grad=True 的张量自动求导。
print(x.requires_grad)
print((x ** 2).requires_grad)
with torch.no_grad():
print((x ** 2).requires_grad)
输出:
True
True
False
PyTorch 自动微分示例的更多相关文章
- PyTorch自动微分基本原理
序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出 ...
- PyTorch 自动微分
PyTorch 自动微分 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后将会去训练的第一个神经网络.该 autograd 软件包为 Tensors 上的所有操作提供 ...
- pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分
参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...
- <转>如何用C++实现自动微分
作者:李瞬生转摘链接:https://www.zhihu.com/question/48356514/answer/123290631来源:知乎著作权归作者所有. 实现 AD 有两种方式,函数重载与代 ...
- MindSpore:自动微分
MindSpore:自动微分 作为一款「全场景 AI 框架」,MindSpore 是人工智能解决方案的重要组成部分,与 TensorFlow.PyTorch.PaddlePaddle 等流行深度学习框 ...
- LibTorch 自动微分
得益于反向传播算法,神经网络计算导数时非常方便,下面代码中演示如何使用LibTorch进行自动微分求导. 进行自动微分运算需要调用函数 torch::autograd::grad( outputs, ...
- 附录D——自动微分(Autodiff)
本文介绍了五种微分方式,最后两种才是自动微分. 前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数. 假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\fr ...
- 自动微分(AD)学习笔记
1.自动微分(AD) 作者:李济深链接:https://www.zhihu.com/question/48356514/answer/125175491来源:知乎著作权归作者所有.商业转载请联系作者获 ...
- Qt 编程指南 3_1 按钮弹窗手动和自动关联示例
触发的两种模式 connect() 和 on_控件ID_控件函数(参数) 两者优缺点对比: 虽然 Qt 有比较好用的自动关联大法,但自动关联不是万能的,尤其是涉及到多个窗体的时候,比如 A 窗体私有按 ...
随机推荐
- 探索使用 Golang 和 Webassembly 构建一个多人游戏服务器
什么是 WebAssembly?由 Google.Microsoft.Mozilla.Apple 等发起的 WebAssembly 是一种新的字节码格式,主流浏览器都已经支持 WebAssembly. ...
- 2- 计算机的组成以及VMware使用
计算机的组成: 硬件: 处理器(CPU):I3 I5 I7 运行内存RAM(存储数据) 容量(字节为单位) 主板(总线设备) 输入输出设备(显示屏,键盘,鼠标,触目屏) 外部存储设备(硬盘,U盘,TF ...
- Laravel路由中不固定数量的参数如何实现?
前言 laravel是个好框架,我也在学习和使用,并且在公司里推广,最近在读 Laravel 源码的时候,发现了一个段特别有趣的代码,大家请看: ... 这三个点是做什么用的呢?我查了 PHP 的手册 ...
- RF-日期时间拼接(20191024_195355)
*** Test Cases *** testGetTime @{time}= Get Time year month day hour min sec ${sDate}= Catenate SEPA ...
- 从苏宁电器到卡巴斯基第09篇:我在苏宁电器当营业员 I
毕竟应聘的是营业员,门槛还是很低的 我应聘苏宁的时候已经到了2009年的8月初,记得当时苏宁电器的长春总部还在吉林大路与东盛大街交汇处的亚泰广场,我当时的面试就是在那里. 我记得很清楚,那天等待面试的 ...
- Java中的反射机制Reflection
目录 什么是反射? 获取.class字节码文件对象 获取该.class字节码文件对象的详细信息 通过反射机制执行函数 反射链 反射机制是java的一个非常重要的机制,一些著名的应用框架都使用了此机制, ...
- POJ2239简单二分匹配
题意: 一周有7天,每天可以上12节课,现在给你每科课的上课时间,问你一周最多可以上几科课,一科课只要上一节就行了. 思路: 简单题目,直接二分就行了,好久没写二分匹配了,练习 ...
- CTF常见的加密和编码方法
目录 哈希摘要算法 对称加密算法 其他加密算法 编码 哈希摘要算法 以 root 加密为例. MD4:32位的摘要算法.2add09183d0b1dc0428701df9838fba MD5:32位 ...
- 使用Github+Picgo搭建图床
虽然我的大部分博客使用的腾讯云的对象存储(COS)作为图床,但是腾讯云的免费对象存储空间结束了,购买资源西南地区大致存储资源包50元/12月+下行流量9元/3月,价格较为高昂,而使用GitHub或者G ...
- SpringBoot配置切换
切换需求 有时候在本地测试是使用8080端口,可是上线使用的又是80端口. 此时就可以通过多配置文件实现多配置支持与灵活切换. 多配置文件 3个配置文件: 核心配置文件:application.pro ...