题解 51nod 1597 有限背包计数问题
题目大意
给出 \(n\),第 \(i\) 个数有 \(i\) 个,问凑出 \(n\) 的方案数。
\(n\le 10^5\)
思路
呜呜呜,傻掉了。。。
首先想到根号分治,分别考虑 \([1,\sqrt n]\) 以及 \([\sqrt n+1,n]\)。
- \([1,\sqrt n]\)
不难看出这部分可以直接 dp,设 \(f_{i,j}\) 为前面 \(i\) 种物品选出重量为 \(j\) 的方案数,可以得到转移式:
\]
- \([\sqrt n+1,n]\)
不难看出这部分最多选出 \(\sqrt n\) 个物品,于是可以设 \(g_{i,j}\) 表示选了 \(i\) 个 物品,选出重量为 \(j\) 的方案数。可以得到转移式:
\]
具体含义就是转移有两种,第一种就是集体右移,即重量为 \(k\) 的都变为 \(k+1\),另外一种就是选 \(\sqrt n+1\)。
综上时空复杂度 \(\Theta(n\log n)\),第一种记得滚动数组,不然会 MLE。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define mod 23333333
#define MAXN 100005
#define MAXM 325
template <typename T> void read (T &x){char c = getchar ();x = 0;int f = 1;while (c < '0' || c > '9') f = (c == '-' ? -1 : 1),c = getchar ();while (c >= '0' && c <= '9') x = x * 10 + c - '0',c = getchar ();x *= f;}
template <typename T,typename ... Args> void read (T &x,Args& ... args){read (x),read (args...);}
template <typename T> void write (T x){if (x < 0) x = -x,putchar ('-');if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,sqr;
int f[2][MAXN],g[MAXM][MAXN],f1[MAXN],f2[MAXN];
/*
f[i][j] 表示前面i个物品选出重量j的方案数,g[i][j]表示i个物品选出重量j的方案数
f[i][j]=f[i-1][j]+f[i][j-i]-f[i-1][j-i*(i+1)]
g[i][j]=g[i][j-i]+g[i-1][j-sqr-1]
*/
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;}
void Work1 (){
f[0][0] = 1;
for (Int i = 1;i <= sqr;++ i)
for (Int j = 0;j <= n;++ j)
f[i & 1][j] = add (f[i - 1 & 1][j],dec (j >= i ? f[i & 1][j - i] : 0,j >= i * (i + 1) ? f[i - 1 & 1][j - i * (i + 1)] : 0));
for (Int i = 0;i <= n;++ i) f1[i] = f[sqr & 1][i];
}
void Work2 (){
g[0][0] = 1;
for (Int i = 1;i <= sqr;++ i)
for (Int j = 0;j <= n;++ j)
g[i][j] = add (j >= i ? g[i][j - i] : 0,j >= sqr + 1 ? g[i - 1][j - sqr - 1] : 0);
for (Int i = 0;i <= n;++ i)
for (Int j = 0;j <= sqr;++ j) f2[i] = add (f2[i],g[j][i]);
}
signed main(){
read (n),sqr = sqrt (n),Work1(),Work2 ();
int ans = 0;for (Int i = 0;i <= n;++ i) ans = add (ans,1ll * f1[i] * f2[n - i] % mod);
write (ans),putchar ('\n');
return 0;
}
题解 51nod 1597 有限背包计数问题的更多相关文章
- 51nod 1597 有限背包计数问题 (背包 分块)
题意 题目链接 Sol 不会做啊AAA.. 暴力上肯定是不行的,考虑根号分组 设\(m = \sqrt{n}\) 对于前\(m\)个直接暴力,利用单调队列优化多重背包的思想,按\(\% i\)分组一下 ...
- 51Nod 有限背包计数问题 题解报告
首先这道题理论上是可以做到O(nlogn)的,因为OEIS上有一个明显可以用多项式乘法加速的式子 但是由于模数不是很兹磁,所以导致nlogn很难写 在这里说一下O(n*sqrt(n))的做法 首先我们 ...
- 51Nod1957 有限背包计数问题
传送门 另一个传送门 这题还挺有意思…… 先贴一波出题人的题解…… (啥你说你看不见?看来你还没过啊,等着A了再看或者乖乖花点头盾好了……) 然后是我的做法……思想都是一样的,只是细节不一样而已…… ...
- [51nod1597]有限背包计数问题
你有一个大小为n的背包,你有n种物品,第i种物品的大小为i,且有i个,求装满这个背包的方案数有多少 两种方案不同当且仅当存在至少一个数i满足第i种物品使用的数量不同 Input 第一行一个正整数n 1 ...
- 2018.09.25 51nod1597 有限背包计数问题(背包+前缀和优化)
传送门 dp好题. 我认为原题的描述已经很清楚了: 你有一个大小为n的背包,你有n种物品,第i种物品的大小为i,且有i个,求装满这个背包的方案数有多少. 两种方案不同当且仅当存在至少一个数i满足第i种 ...
- 【LOJ6089】小Y的背包计数问题(动态规划)
[LOJ6089]小Y的背包计数问题(动态规划) 题面 LOJ 题解 神仙题啊. 我们分开考虑不同的物品,按照编号与\(\sqrt n\)的关系分类. 第一类:\(i\le \sqrt n\) 即需要 ...
- LOJ #6089. 小 Y 的背包计数问题
LOJ #6089. 小 Y 的背包计数问题 神仙题啊orz. 首先把数分成\(<=\sqrt n\)的和\(>\sqrt n\)的两部分. \(>\sqrt n\)的部分因为最多选 ...
- LOJ#6089 小 Y 的背包计数问题 - DP精题
题面 题解 (本篇文章深度剖析,若想尽快做出题的看官可以参考知名博主某C202044zxy的这篇题解:https://blog.csdn.net/C202044zxy/article/details/ ...
- LOJ6089 小Y的背包计数问题(根号优化背包)
Solutioon 这道题利用根号分治可以把复杂度降到n根号n级别. 我们发现当物品体积大与根号n时,就是一个完全背包,换句话说就是没有了个数限制. 进一步我们发现,这个背包最多只能放根号n个物品. ...
随机推荐
- request请求《一》
1. request对象通常用来接收客户端提交到服务端的数据,如:在servlet或者action中可以用request.getParameter()的方法获取获取参数内容: 2. requestSc ...
- 分布式ID生成器及redis,etcd分布式锁
分布式id生成器 有时我们需要能够生成类似MySQL自增ID这样不断增大,同时又不会重复的id.以支持业务中的高并发场景.比较典型的,电商促销时,短时间内会有大量的订单涌入到系统,比如每秒10w+.明 ...
- Pulsar の 保证消息的顺序性、幂等性和可靠性
原文链接:Pulsar の 保证消息的顺序性.幂等性和可靠性 一.背景 前面两篇文章,已经介绍了关于Pulsar消费者的详细使用和自研的Pulsar组件. 接下来,将简单分析如何保证消息的顺序性.幂等 ...
- vue 打开新窗口进行打印
父文件 let { href } = this.$router.resolve({ path: ' 自己配置本地路由,不需要动态路由 ', query: 个人建议传一整个对象 }) window.op ...
- 你的 JVM 基础“大厦”稳健吗?
[从 1 开始学 JVM 系列] JVM 对于每位 Java 语言编程者来说无疑是"重中之重",尽管我们每天都在与它打交道,却很少来审视它.了解它,慢慢地,它成为了我们" ...
- SpringBoot详解(一)——
https://www.cnblogs.com/lifullmoon/p/14957771.html https://www.cnblogs.com/lifullmoon/p/14957751.htm ...
- MyBatis学习总结(六)——Mybatis3.x与Spring4.x整合
一.搭建开发环境 1.1.使用Maven创建Web项目 执行如下命令: mvn archetype:create -DgroupId=me.gacl -DartifactId=spring4-myba ...
- CentOS 7操作系统安装
1.关于运维小伙伴可以采用何种方式安装操作系统 下面列举的只是我会用到的安装方式,在运维过程中并不一定是最优解,只是自己运维过程中的一些经验. (1)物理服务器,可以通过连接管理口来安装操作系统,管理 ...
- MobaXterm - 渗透之旅的终端神器
一.背景 1.SSH概念 如果想要连接Linux服务器来进行文件之间的传送,那就需要一个Secure Shell软件(简称SSH的)来完成.从概念上来讲,SSH其实是一个网络协议,允许通过网络连接到L ...
- 用Java写了一个程序,将一个Mysql库中的表,迁移到另外一个server上的Mysql库中
用Navicat做数据迁移,因为数据量比较大,迁移过过程中一个是进展不直观,另外就是cpu占用率高的时候,屏幕跟死机了一样点不动按钮,不好中断. 想了想,干脆自己写一个. 在网上找了一个sqllite ...