题目传送门

题目大意

给出 \(n,k\) 以及 \(a_{1,2,...,n}\) ,求有多少个 \(m_{1,2,...,n}\) 满足 \(\forall i,m_i\le a_i\) 且 \(\oplus_{i=1}^{n} m_i=k\) 。

\(n\le 50,a_i\le 2^{31}-1\)

思路

这个题目真的很神仙。。。

首先你要想到一点,就是对于二进制下的数,肯定是前面一段都相同,突然某一位 \(a_i=1\) 你 \(m_i=0\) 那么 \(m_i\) 你后面就可以乱选了。然后根据这个我们可以设状态 \(dp[i][len][pre]\) 表示到第 \(i\) 个数,你前面 \(len\) 位不能乱选,其余可以乱选,异或前缀和为 \(pre\) 的方案数。具体转移见代码,自认为理解定义之后就可以理解转移了。然后你发现空间开不下,但是实际上你发现你确定 \(len\) 之后 \(pre\) 前面 \(len-1\) 位就确定了,所以状态可以优化到 \(2\) 。具体见代码。

\(\texttt{Code}\)

#include <bits/stdc++.h>
using namespace std; #define Int register int
#define mod 1000000003 template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');} int mul (int a,int b){return 1ll * a * b % mod;}
int dec (int a,int b){return a >= b ? a - b : a + mod - b;}
int add (int a,int b){return a + b >= mod ? a + b - mod : a + b;} int n,m,a[55],pw[35],dp[55][35][2]; int dfs (int i,int pre,int len){
pre &= (~((1 << len) - 1));
if (i > n) return !pre;
int k = (pre & (1 << len)) ? 1 : 0,res = 0,now = 0;
if (~dp[i][len][k]) return dp[i][len][k];
for (Int j = 31;~j;-- j)
if (a[i] & (1 << j)){
res = add (res,mul (pw[min (len,j)],dfs (i + 1,pre ^ now,max (len,j))));
now |= (1 << j);
}
return dp[i][len][k] = res;
} signed main(){
pw[0] = 1;
for (Int i = 1;i <= 31;++ i) pw[i] = (pw[i - 1] << 1) % mod;
while (~scanf ("%d%d",&n,&m) && (n || m)){
memset (dp,-1,sizeof (dp));
for (Int i = 1;i <= n;++ i) read (a[i]),a[i] ++;
write (dfs (1,m,0)),putchar ('\n');
}
return 0;
}

题解 Math teacher's homework的更多相关文章

  1. HDU3693 Math Teacher's Homework ---- 数位DP

    HDU3693 Math Teacher's Homework 一句话题意 给定$n, k以及m_1, m_2, m_3, ..., m_n$求$x_1 \oplus x_2 \oplus x_3 \ ...

  2. Math teacher's homework

    Title:[Math teacher's homework] Description 题目大意:给你n个数m1,m2...mn,求满足X1 xor X2 xor ... xor Xn=k,0< ...

  3. POJ 3986 Math teacher's homework

    题目 给出\(n,m_1,m_2,...,m_n\),求\(x_1 xor x_2 xor ... xor x_n=k (0 \leq x_i \leq m_i)\)的解的数量.二进制位数小于\(32 ...

  4. HDU 5068 Harry And Math Teacher

    主题链接~~> 做题情绪:的非常高深,有种高大上的感觉. 解题思路: 两层之间的联通能够看成是一个矩阵  代表上下两层都能够联通,,代表下层第1个门与上层第一个门不联通,以此类推联通就能够用矩阵 ...

  5. HDU 5068 Harry And Math Teacher 线段树+矩阵乘法

    题意: 一栋楼有n层,每一层有2个门,每层的两个门和下一层之间的两个门之间各有一条路(共4条). 有两种操作: 0 x y : 输出第x层到第y层的路径数量. 1 x y z : 改变第x层 的 y门 ...

  6. 题解 math

    传送门 赛时用一个奇怪的方法过掉了 首先\(b_i\)的有效范围是\([0, k-1]\) 发现不同的\(a_i*b_i\)会有很多重的 考虑把\(a_i\%k\),然后由小到大排序 按顺序扫,如果某 ...

  7. 【转载】ACM总结——dp专辑

    感谢博主——      http://blog.csdn.net/cc_again?viewmode=list       ----------  Accagain  2014年5月15日 动态规划一 ...

  8. 【DP专辑】ACM动态规划总结

    转载请注明出处,谢谢.   http://blog.csdn.net/cc_again?viewmode=list          ----------  Accagain  2014年5月15日 ...

  9. 【DP专辑】ACM动态规划总结(转)

    http://blog.csdn.net/cc_again/article/details/25866971 动态规划一直是ACM竞赛中的重点,同时又是难点,因为该算法时间效率高,代码量少,多元性强, ...

随机推荐

  1. FFmpeg 播放 RTSP/Webcam 流

    本文将介绍 FFmpeg 如何播放 RTSP/Webcam/File 流.流程如下: RTSP/Webcam/File > FFmpeg open and decode to BGR/YUV & ...

  2. 解析ThreadPoolExecutor类是如何保证线程池正确运行的

    摘要:对于线程池的核心类ThreadPoolExecutor来说,有哪些重要的属性和内部类为线程池的正确运行提供重要的保障呢? 本文分享自华为云社区<[高并发]通过源码深度解析ThreadPoo ...

  3. VMware虚拟机 + ubuntu16.04 Linux OpenCV打不开摄像头解决办法

    通过如下步骤,已解决:(不知哪个步骤是关键,全写下来) sudo apt-get update sudo apt-get upgrade 在Windows下先确认摄像头能正常读取. USB控制器选择U ...

  4. vue element-ui 做分页功能之封装

    在 vue 项目中的 components 中 创建一个 文件夹,文件夹里创建一个 name(这个名字你随意取).vue <template>   <div class=" ...

  5. Python - 面向对象编程 - 新式类和旧式类

    object object 是 Python 为所有对象提供的父类,默认提供一些内置的属性.方法:可以使用 dir 方法查看 新式类 以 object 为父类的类,推荐使用 在 Python 3.x ...

  6. PyQt5 笔记

    一.简介 pyqt5做为Python的一个模块,它有620多个类和6000个函数和方法.这是一个跨平台的工具包,它可以运行在所有主要的操作系统,包括UNIX,Windows,Mac OS.pyqt5是 ...

  7. NOIP模拟38:a

      这是T1.   考场上思路与正解就差个前缀,打的线段树,因为其巨大常数快乐挂掉......   正解复杂度是\(O(n^2m)\),其实再挂个\(log\)也能过,但是需要用常数极其优秀的树状数组 ...

  8. IS(上升子序列)

    前言:   这是一篇杂题选讲+作者口胡的博客,不喜勿喷. 正文:   提示:在阅读时请留意加粗的字体是"极长"还是"最长".   今天改题时碰到了一道关于线段树 ...

  9. TCP可靠传输原理

    停止等待协议 "停止等待"就是发送方在发送完一个分组后停止发送,等待接收方的确认后再继续发送. 超时重传 发送方在等待一定时间后如果还没有收到接收方的确认,此时发送方将认定分组没有 ...

  10. CSS导航菜单(一级菜单)

    index.html <div class="nav"> <ul> <li><a href="#">Java&l ...