单串

单串 dp[i] 线性动态规划最简单的一类问题,输入是一个串,状态一般定义为 dp[i] := 考虑[0..i]上,原问题的解,其中 i 位置的处理,根据不同的问题,主要有两种方式:

  第一种是 i 位置必须取,此时状态可以进一步描述为 dp[i] := 考虑[0..i]上,且取 i,原问题的解;
  第二种是 i 位置可以取可以不取

大部分的问题,对 i 位置的处理是第一种方式,例如力扣:

70 爬楼梯问题
801 使序列递增的最小交换次数
790 多米诺和托米诺平铺
746 使用最小花费爬楼梯
线性动态规划中单串 dp[i] 的问题,状态的推导方向以及推导公式如下

1. 依赖比 i 小的 O(1) 个子问题
dp[n] 只与常数个小规模子问题有关,状态的推导过程 dp[i] = f(dp[i - 1], dp[i - 2], ...)。时间复杂度 O(n),空间复杂度 O(n) 可以优化为 O(1),例如上面提到的 70, 801, 790, 746 都属于这类。

如图所示,虽然绿色部分的 dp[i-1], dp[i-2], ..., dp[0] 均已经计算过,但计算橙色的当前状态时,仅用到 dp[i-1],这属于比 i 小的 O(1)个子问题。

例如,当 f(dp[i-1], ...) = dp[i-1] + nums[i] 时,当前状态 dp[i] 仅与 dp[i-1] 有关。这个例子是一种数据结构前缀和的状态计算方式,关于前缀和的详细内容请参考下一章。

2. 依赖比 i 小的 O(n) 个子问题
dp[n] 与此前的更小规模的所有子问题 dp[n - 1], dp[n - 2], ..., dp[1] 都可能有关系。

状态推导过程如下:

dp[i] = f(dp[i - 1], dp[i - 2], ..., dp[0])

依然如图所示,计算橙色的当前状态 dp[i] 时,绿色的此前计算过的状态 dp[i-1], ..., dp[0] 均有可能用到,在计算 dp[i] 时需要将它们遍历一遍完成计算。

其中 f 常见的有 max/min,可能还会对 i-1,i-2,...,0 有一些筛选条件,但推导 dp[n] 时依然是 O(n)O(n) 级的子问题数量。

例如:

  139 单词拆分
  818 赛车
以 min 函数为例,这种形式的问题的代码常见写法如下

for i = 1, ..., n

  for j = 1, ..., i-1
    dp[i] = min(dp[i], f(dp[j])
时间复杂度 O(n^{2}),空间复杂度 O(n)

单串 dp[i] 经典问题
以下内容将涉及到的知识点对应的典型问题进行讲解,题目和解法具有代表性,可以从一个问题推广到一类问题。

1. 依赖比 i 小的 O(1) 个子问题
53. 最大子数组和
给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

一个数组有很多个子数组,求哪个子数组的和最大。可以按照子数组的最后一个元素来分子问题,确定子问题后设计状态

dp[i] := [0..i] 中,以 nums[i] 结尾的最大子数组和
状态的推导是按照 i 从 0 到 n - 1 按顺序推的,推到 dp[i],时,dp[i - 1], ..., dp[0] 已经计算完。因为子数组是连续的,所以子问题 dp[i] 其实只与子问题 dp[i - 1] 有关。如果 [0..i-1] 上以 nums[i-1] 结尾的最大子数组和(缓存在 dp[i-1] )为非负数,则以 nums[i] 结尾的最大子数组和就在 dp[i-1] 的基础上加上 nums[i] 就是 dp[i] 的结果否则以 i 结尾的子数组就不要 i-1 及之前的数,因为选了的话子数组的和只会更小。

按照以上的分析,状态的转移可以写出来,如下

dp[i] = nums[i] + max(dp[i - 1], 0)
这个是单串 dp[i] 的问题,状态的推导方向,以及推导公式如下

dp[i] = f(dp[i - 1], dp[i - 2], ..., dp[0])

在本题中,f(dp[i-1], ..., dp[0]) 即为 max(dp[i-1], 0) + nums[i],dp[i] 仅与 dp[i-1] 1 个子问题有关。因此虽然绿色部分的子问题已经计算完,但是推导当前的橙色状态时,只需要 dp[i-1] 这一个历史状态。

2. 依赖比 i 小的 O(n) 个子问题
300. 最长上升子序列
给定一个无序的整数数组,找到其中最长上升子序列的长度。

输入是一个单串,首先思考单串问题中设计状态 dp[i] 时拆分子问题的方式:枚举子串或子序列的结尾元素来拆分子问题,设计状态 dp[i] := 在子数组 [0..i] 上,且选了 nums[i] 时,的最长上升子序列。

因为子序列需要上升,因此以 i 结尾的子序列中,nums[i] 之前的数字一定要比 nums[i] 小才行,因此目标就是先找到以此前比 nums[i] 小的各个元素,然后每个所选元素对应一个以它们结尾的最长子序列,从这些子序列中选择最长的,其长度加 1 就是当前的问题的结果。如果此前没有比 nums[i] 小的数字,则当前问题的结果就是 1 。

本题依然是单串 dp[i] 的问题,状态的推导方向,以及推导公式与上一题的图示相同,

状态的推导依然是按照 i 从 0 到 n-1 推的,计算 dp[i] 时,dp[i-1], dp[i-2], ..., dp[0] 依然已经计算完。

但本题与上一题的区别是推导 dp[i] 时,dp[i-1]. dp[i-2], ..., dp[0] 均可能需要用上,即,因此计算当前的橙色状态时,绿色部分此前计算过的状态都可能需要用上。

单串相关练习题
最经典单串 LIS 系列
最大子数组和系列
打家劫舍系列
变形:需要两个位置的情况
与其它算法配合
其它单串 dp[i] 问题
带维度单串 dp[i][k]
股票系列

动态规划精讲(一)A单串的更多相关文章

  1. 动态规划精讲(一)LC 最长递增子序列的个数

    最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数. 示例 1: 输入: [1,3,5,4,7]输出: 2解释: 有两个最长递增子序列,分别是 [1, 3, 4, 7] 和[1, ...

  2. 动态规划精讲(一)LC最长公共子序列

    P1439 [模板]最长公共子序列 题目描述 给出1,2,-,n 的两个排列P1​ 和P2​ ,求它们的最长公共子序列. 输入格式 第一行是一个数 n. 接下来两行,每行为 n 个数,为自然数 1,2 ...

  3. 第三百四十三节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy模拟登陆和知乎倒立文字验证码识别

    第三百四十三节,Python分布式爬虫打造搜索引擎Scrapy精讲—scrapy模拟登陆和知乎倒立文字验证码识别 第一步.首先下载,大神者也的倒立文字验证码识别程序 下载地址:https://gith ...

  4. 深入Java核心 Java内存分配原理精讲

    深入Java核心 Java内存分配原理精讲 栈.堆.常量池虽同属Java内存分配时操作的区域,但其适用范围和功用却大不相同.本文将深入Java核心,详细讲解Java内存分配方面的知识. Java内存分 ...

  5. 《VC++ 6简明教程》即VC++ 6.0入门精讲 学习进度及笔记

    VC++6.0入门→精讲 2013.06.09,目前,每一章的“自测题”和“小结”三个板块还没有看(备注:第一章的“实验”已经看完). 2013.06.16 第三章的“实验”.“自测题”.“小结”和“ ...

  6. Linux实战教学笔记12:linux三剑客之sed命令精讲

    第十二节 linux三剑客之sed命令精讲 标签(空格分隔): Linux实战教学笔记-陈思齐 ---更多资料点我查看 1,前言 我们都知道,在Linux中一切皆文件,比如配置文件,日志文件,启动文件 ...

  7. 【原创】分布式之redis复习精讲

    引言 为什么写这篇文章? 博主的<分布式之消息队列复习精讲>得到了大家的好评,内心诚惶诚恐,想着再出一篇关于复习精讲的文章.但是还是要说明一下,复习精讲的文章偏面试准备,真正在开发过程中, ...

  8. 转 Redis 总结精讲 看一篇成高手系统-4

    转 Redis 总结精讲 看一篇成高手系统-4 2018年05月31日 09:00:05 hjm4702192 阅读数:125633   本文围绕以下几点进行阐述 1.为什么使用redis 2.使用r ...

  9. 总结:Java 集合进阶精讲1

    知识点:Java 集合框架图 总结:Java 集合进阶精讲1 总结:Java 集合进阶精讲2-ArrayList 集合进阶1---为集合指定初始容量 集合在Java编程中使用非常广泛,当容器的量变得非 ...

随机推荐

  1. MapReduce框架原理--Shuffle机制

    Shuffle机制 Mapreduce确保每个reducer的输入都是按键排序的.系统执行排序的过程(Map方法之后,Reduce方法之前的数据处理过程)称之为Shuffle. partition分区 ...

  2. dubbo学习实践(4)之Springboot整合Dubbo及Hystrix服务熔断降级

    1. springboot整合dubbo 在provider端,添加maven引入,修改pom.xml文件 引入springboot,版本:2.3.2.RELEASE,dubbo(org.apache ...

  3. Java和Groovy脚本互相调用实例

    本实例是GODU动态脚本的一个技术简化版,演示了java调groovy,groovy又调java的运行过程. 测试用例: package com.boco.godu.integration; impo ...

  4. MySQL学习06(事务和索引)

    事务 概述 什么是事务 事务就是将一组SQL语句放在同一批次内去执行 如果一个SQL语句出错,则该批次内的所有SQL都将被取消执行 MySQL事务处理只支持InnoDB和BDB数据表类型 事务的ACI ...

  5. 【监控】Zabbix安装

    目录 一.监控目的 二.监控方式 三.主流监控系统 四.Zabbix介绍 五.Zabbix服务端安装 5.1 环境介绍 5.2 准备系统环境 5.3 安装Nginx(源码编译安装) 5.3.1 配置N ...

  6. HCNA Routing&Switching之地址转换技术NAT

    前文我们了解了包过滤工具ACL相关话题,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15156308.html:今天我们来聊一聊地址转换技术NAT相关话题: ...

  7. Python - typing 模块 —— NewType

    前言 typing 是在 python 3.5 才有的模块 前置学习 Python 类型提示:https://www.cnblogs.com/poloyy/p/15145380.html 常用类型提示 ...

  8. 007 PCI总线的桥与配置(二)

    一.PCI桥与PCI设备的配置空间 PCI设备都有独立的配置空间,HOST主桥通过配置读写总线事务访问这段空间.PCI总线规定了三种类型的PCI配置空间,分别是PCI Agent设备使用的配置空间,P ...

  9. 题解 CF613E Puzzle Lover

    解题思路 其实仔细观察我们可以发现路径一定是一个类似于下图的一个左括号之后中间随便反复曲折,然后右边在来一个右括号. 然后对于两个括号形状的东西其实是可以利用 Hash 来判等特殊处理的. 对于中间的 ...

  10. SpringBoot自定义参数验证器

    前要 之前我们介绍了JSR-303验证方式,十分的方便Spring都帮我们封装好了,但是对一些复杂的验证,还是需要更加灵活的验证器的. JSR-303验证器传送门:https://www.jiansh ...