Content

给定一个整数 \(n\)。每次操作你可以做两件事情中的一件:

  • 删去这个数中的一个数位(如果这个数只剩下一位,则可以把它删空)。
  • 在这个数的右边添加一个数位。

你可以以任意顺序执行无限次操作。但请注意,在删去一个数位之后,这个数可能包含前导零(例如在删去 \(301\) 中的 \(3\) 这一位之后,这个数就会变成 \(01\) 而不是 \(1\))。

你需要执行若干次操作,使得这个数最终变成一个 \(2\) 的次幂,或者说存在一个非负整数 \(k\) 使得这个数最终是 \(2^k\)。最终答案不能包含前导零。请求出需要执行的操作的最小次数。

数据范围:\(t\) 组数据,\(1\leqslant t\leqslant 10^4\),\(1\leqslant n\leqslant 10^9\)。

Solution

这题目讲究的就是一个枚举。由于 \(2\) 的次幂是呈指数级增长的,因此在 \(10^{18}\) 的范围以内的 \(2\) 的次幂也只有 \(59\) 个。所以我们可以直接枚举每一个 \(10^{18}\) 以内的 \(2\) 的次幂,求出当前数修改成每个 \(2\) 的次幂需要的最小操作次数,取最小值即可。这种枚举方法在本题中亲测可过。

其次,如何求出当前数修改成 \(2\) 的次幂的最小操作次数?我们不妨将数转化为字符串,然后考虑尽量多地去做第一种操作,留下 \(2\) 的次幂或者 \(2\) 的次幂的一个前缀,因此这可以转化为求出第一个数字串的最长前缀子序列,直接拿一个指针比对即可。设第一个数字串的长度是 \(l_1\),第二个数字串的长度是 \(l_2\),求出的第一个串的最长前缀子序列的长度为 \(len\),那么最小修改次数就是 \(l_1+l_2-2\cdot len\),因为需要 \(l_1-len\) 次第一种操作将不是子序列中的数字删除,另外还需要 \(l_2-len\) 次第二种操作将 \(2\) 的次幂的前缀变为 \(2\) 的次幂。

注意这里要枚举到 \(10^{18}\),因为它可能在这个数的右边添加一个数位,所以直接枚举到 \(10^9\) 显然无法枚举完整所有的情况。

Code

namespace Solution {
const int N = 67;
int cnt;
string ans[N]; inline string ll_to_str(ll x) {
string ans = "";
ll p = x;
while(p) ans += (p % 10 + '0'), p /= 10;
reverse(ans.begin(), ans.end());
return ans;
}
ii solve(string a, string b) {
int lena = a.size(), lenb = b.size(), j = 0;
F(int, i, 0, lenb - 1) if(b[i] == a[j]) ++j;
return lenb + lena - 2 * j;
} iv Main() {
for(ll i = 1; i <= 1e18; ans[++cnt] = ll_to_str(i), i <<= 1ll);
MT {
string s; cin >> s;
int res = 0x3f3f3f3f;
F(int, i, 1, cnt) res = min(res, solve(ans[i], s));
println(res);
}
return;
}
}

CF1560D Make a Power of Two 题解的更多相关文章

  1. Power Strings[poj2406]题解

    Power Strings Description - Given two strings a and b we define ab to be their concatenation. For ex ...

  2. leetcode 231 Power of Two(位运算)

    Given an integer, write a function to determine if it is a power of two. 题解:一次一次除2来做的话,效率低.所以使用位运算的方 ...

  3. 最短路<dijk>

    题意: 有n个城市,有m条路,给出每条路的出发和结束的城市及长度,求从第一个城市到最后一个城市的最短路.按格式输出. power oj 2443 题解: 标准dijk算法. #include<c ...

  4. LeetCode编程训练 - 位运算(Bit Manipulation)

    位运算基础 说到与(&).或(|).非(~).异或(^).位移等位运算,就得说到位运算的各种奇淫巧技,下面分运算符说明. 1. 与(&) 计算式 a&b,a.b各位中同为 1 ...

  5. 算法与数据结构基础 - 位运算(Bit Manipulation)

    位运算基础 说到与(&).或(|).非(~).异或(^).位移等位运算,就得说到位运算的各种奇淫巧技,下面分运算符说明. 1. 与(&) 计算式 a&b,a.b各位中同为 1 ...

  6. C++题解:Matrix Power Series ——矩阵套矩阵的矩阵加速

    Matrix Power Series r时间限制: 1 Sec 内存限制: 512 MB 题目描述 给定矩阵A,求矩阵S=A^1+A^2+--+A^k,输出矩阵,S矩阵中每个元都要模m. 数据范围: ...

  7. 【题解】Power Strings

    题目描述 给定若干个长度小于等于10^6的字符串,询问每个字符串最多由多少个相同的子串重复连接而成.如:ababab,最多由3个ab连接而成. 输入输出格式 输入格式 若干行,每行一个字符串. 当读入 ...

  8. 洛谷3800:Power收集——题解

    https://www.luogu.org/problemnew/show/P3800 可以把游戏界面理解成一个N行M列的棋盘,有K个格子上有P点,其价值为val(i,j) 初始灵梦可以选择在第一行的 ...

  9. 题解 SP7579 YOKOF - Power Calculus

    SP7579 YOKOF - Power Calculus 迭代加深搜索 DFS每次选定一个分支,不断深入,直至到达递归边界才回溯.这种策略带有一定的缺陷.试想以下情况:搜索树每个节点的分支数目非常多 ...

随机推荐

  1. 快速入门上手Markdown

    第一次接触Markdown是写代码初期看很多大佬的github,他们的项目一定会有一份文件叫Readme.md的文件 他们由一些简单美观的符号和汉字字母组成,编译之后成为一篇简单直观的文档 深入了解之 ...

  2. Matlab矢量图图例函数quiverkey

    Matlab自带函数中不包含构造 quiver 函数注释过程,本文参照 matplotlib 中 quiverkey 函数,构造类似函数为 Matlab 中 quiver 矢量场进行标注. quive ...

  3. pheatmap() 的热图制作

    1.数据准备 2.画图 3.参数调整 (转自百迈克公众号) 关注下方公众号可获得更多精彩

  4. python 字典 key 对应多个 value

    基本思路是,将key对应的value设置为list,将对应的值append进去. 示例: f=open("a1.txt") ha={} for i in f: i=i.strip( ...

  5. Python3编译安装ssl模块问题

    本文以Centos系统为例 1.确保linux系统中安装了ssl-devel包 2.编译安装ssl模块到Python3中 1.查看linux系统中是否安装了ssl-devel包 # 查看命令 rpm ...

  6. 爬虫系列:使用 MySQL 存储数据

    上一篇文章我们讲解了爬虫如何存储 CSV 文件,这篇文章,我们讲解如何将采集到的数据保存到 MySQL 数据库中. MySQL 是目前最受欢迎的开源关系型数据库管理系统.一个开源项目具有如此之竞争力实 ...

  7. 【leetcode】170. Two Sum III - Data structure design 两数之和之三 - 数据结构设计

    Design and implement a TwoSum class. It should support the following operations:  add and find. add  ...

  8. 【leetcode】222. Count Complete Tree Nodes(完全二叉树)

    Given the root of a complete binary tree, return the number of the nodes in the tree. According to W ...

  9. ViewStub应用

    在开发应用程序的时候,会遇到这样的情况,在运行时动态的根据条件来决定显示哪个View或哪个布局,可以把可能用到的View都写在上面,先把他们的可见性设置为View.GONE,然后在代码中动态的更改它的 ...

  10. Private Destructor

    Predict the output of following programs. 1 #include <iostream> 2 using namespace std; 3 4 cla ...