9.9 T3 第负二题

\(f_i\) 的数学意义:中心在第 \(i\) 行的全 \(1\) 组成的最大正方形(对角线水平/竖直),对角线长 \(2f_i-1\)。

显然 \(f_i\) 具有单调性(存在较大的正方形则一定存在更小的)。由此得到一个朴素做法:

对于每行二分答案 \(k\),判断是否合法即判断是否存在合法的中心:

\[\max\{l_j+k-1+(i-j)\}\le\min\{r_j-k+1-(i-j)\},j\le i
\]
\[\max\{l_j+k-1+(j-i)\}\le\min\{r_j-k+1-(j-i)\},j\ge i
\]

发现两个 \(\max,\min\) 中与 \(j\) 相关的分别为 \(l_j-j,r_j+j,l_j+j,r_j-j\),RMQ 即可。

时间复杂度 \(O(n\log n)\)

另一个结论是 \(f_{i-1}-1\le f_i\le f_{i-1}+1\)(第 \(i-1\) 行变为 \(0\) 的下一时刻第 \(i\) 行一定都是 \(0\))。因此 \(k\) 不用二分,从 \(f_{i-1}-1\) 开始枚举即可,如果当前 \(k\) 不合法,则 \(f_i=k-1\),否则 \(k\leftarrow k+1\)。

考虑单调队列做到 \(O(n)\) RMQ。

对于 \(j\ge i\) 的情况,第 \(i-1\) 行 \(j\) 的区间为 \([i-1,(i-1)+(k+1)-1]\),扩展到第 \(i\) 行时变为 \([i,i+k-1]\),\(i,k\) 变大时左右端点都单调,普通单调队列。

对于 \(j\le i\),区间为 \([(i-1)-(k+1)+1,i-1]\) 变到 \([i-k+1,i]\),左端点不具有单调性。发现 \(k\) 最多变大两次,因此强制令左端点单调,对于没有考虑到的点(最多两个)特判即可。

code
const int N = 5e6+5, mod = 998244353;
int L,X,Y;
ULL A,B; int n,m,l[N],r[N],f[N];
LL ans; struct Que {
int fro,rea,que[N];
Que() { fro = 1, rea = 0; }
int front() { return que[fro]; }
int back() { return que[rea]; }
void push_back(int x) { que[++rea] = x; }
void pop_back() { --rea; }
bool empty() { return fro>rea; }
void valid(int l) { while( fro<=rea && que[fro] < l ) ++fro; }
} ul,ur,dl,dr; namespace data {
typedef unsigned long long u64;
u64 xorshift128p(u64 &A, u64 &B) { u64 T = A, S = B; A = S; T ^= T << 23;
T ^= T >> 17; T ^= S ^ (S >> 26); B = T; return T + S; }
void gen(int n, int L, int X, int Y, u64 A, u64 B, int l[], int r[]) {
for (int i = 1; i <= n; i ++) { l[i] = xorshift128p(A, B) % L + X;
r[i] = xorshift128p(A, B) % L + Y; if (l[i] > r[i]) swap(l[i], r[i]); } }
} signed main() {
read(n,L,X,Y,A,B); data::gen(n,L,X,Y,A,B,l,r);
f[1] = 1;
For(i,2,n) For(k,max(f[i-1],2),f[i-1]+2) { int j = i+k-1;
ul.valid(i-k+1), ur.valid(i-k+1), dl.valid(i), dr.valid(i);
while( !ul.empty() && l[i]+i >= l[ul.back()]+ul.back() ) ul.pop_back();
while( !ur.empty() && r[i]-i <= r[ur.back()]-ur.back() ) ur.pop_back();
while( !dl.empty() && l[j]-j >= l[dl.back()]-dl.back() ) dl.pop_back();
while( !dr.empty() && r[j]+j <= r[dr.back()]+dr.back() ) dr.pop_back();
ul.push_back(i), ur.push_back(i), dl.push_back(j), dr.push_back(j);
int le = l[ul.front()]+ul.front()-i+k-1,
ri = r[ur.front()]-ur.front()+i-k+1;
ckmax(le,l[dl.front()]-dl.front()+i+k-1),
ckmin(ri,r[dr.front()]+dr.front()-i-k+1);
if( k > f[i-1] )
ckmax(le,l[i-k+1]+i-k+1-i+k-1), ckmin(ri,r[i-k+1]-(i-k+1)+i-k+1);
if( k > f[i-1]+1 )
ckmax(le,l[i-k+2]+i-k+2-i+k-1), ckmin(ri,r[i-k+2]-(i-k+2)+i-k+1);
if( le > ri ) { f[i] = k-1; break; }
}
for(LL i = 1, pw = 1; i <= n; ++i, pw = pw*3%mod) ans += pw * f[i] %mod;
write(ans%mod);
return iocl();
}

2021秋 noip 模拟赛的更多相关文章

  1. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  2. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

  3. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  4. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

  5. 队爷的讲学计划 CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的讲学计划 题解:刚开始理解题意理解了好半天,然后发 ...

  6. 队爷的Au Plan CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的Au%20Plan 题解:看了题之后觉得肯定是DP ...

  7. 队爷的新书 CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的新书 题解:看到这题就想到了 poetize 的封 ...

  8. CH Round #58 - OrzCC杯noip模拟赛day2

    A:颜色问题 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2358%20-%20OrzCC杯noip模拟赛day2/颜色问题 题解:算一下每个仆人到它的目的地 ...

  9. CH Round #52 - Thinking Bear #1 (NOIP模拟赛)

    A.拆地毯 题目:http://www.contesthunter.org/contest/CH%20Round%20%2352%20-%20Thinking%20Bear%20%231%20(NOI ...

随机推荐

  1. synchronized 优化手段之锁膨胀机制!

    synchronized 在 JDK 1.5 之前性能是比较低的,在那时我们通常会选择使用 Lock 来替代 synchronized.然而这个情况在 JDK 1.6 时就发生了改变,JDK 1.6 ...

  2. 表格技术七十二变|手把手教你用Canvas电子表格做电子签名

    转载请注明出处:葡萄城官网,葡萄城为开发者提供专业的开发工具.解决方案和服务,赋能开发者. 日常生活工作学习中,大家对电子表格必定不陌生.从工作数据汇总分析到出门收据各种电子发票,这些都是由电子表格制 ...

  3. SpringBoot 如何进行参数校验,老鸟们都这么玩的!

    大家好,我是飘渺. 前几天写了一篇 SpringBoot如何统一后端返回格式?老鸟们都是这样玩的! 阅读效果还不错,而且被很多号主都转载过,今天我们继续第二篇,来聊聊在SprinBoot中如何集成参数 ...

  4. 快速理解VLAN与三层交换机

    一.VLAN 1.1.VLAN的概述与优势 VLAN是逻辑隔离的虚拟局域网,作用是分割广播域(分为物理分割和逻辑分割) VLAN的优势:控制广播.增强网络安全性.简化网络管理 1.2.VLAN的种类 ...

  5. Golang语言系列-17-Gin框架

    Gin框架 Gin框架简介 package main import ( "github.com/gin-gonic/gin" "io" "net/ht ...

  6. Java 多线程与并发【知识点笔记】

    Java 多线程与并发[知识点笔记] Java多线程与并发 先说一下线程与进程的由来: 在初期的计算机,计算机只能串行执行任务,并且需要长时间的等待用户的输入才行 到了后来,出现了批处理,可以预先将用 ...

  7. deepin设置jdk全局变量

    sudo vim /etc/bash.bashrc 在文件最后边添加 JAVA_HOME=jdk地址CLASSPATH=.:$JAVA_HOME/bin.tools.jarPATH=$JAVA_HOM ...

  8. NB-IoT四大关键特性及实现告诉你,为啥NB

    摘要:NB- IoT 网络是基于4G网络演进过来的,所以它在上行和下行的复用技术上还是沿用了4G的OFDMA和SC-FDMA. 本文分享自华为云社区<一文了解NB-IoT四大关键特性以及实现技术 ...

  9. 常用css样式(文字超出部分用省略号显示、鼠标经过图片放大、出现阴影)

    文字超出部分用省略号显示: white-space: nowrap; /* 不换行 */ overflow: hidden; /* 超出部分不显示 */ text-overflow: ellipsis ...

  10. VS 添加自定义--代码块 实现一秒创建方法

    创建一个方法 你是不是不可避免需要敲以下至少6行代码 现在教你一个方法 实现一秒创建完整方法 首先按照代码块规则创建代码块文件 代码块意义,是什么? 请参考: https://docs.microso ...