9.9 T3 第负二题

\(f_i\) 的数学意义:中心在第 \(i\) 行的全 \(1\) 组成的最大正方形(对角线水平/竖直),对角线长 \(2f_i-1\)。

显然 \(f_i\) 具有单调性(存在较大的正方形则一定存在更小的)。由此得到一个朴素做法:

对于每行二分答案 \(k\),判断是否合法即判断是否存在合法的中心:

\[\max\{l_j+k-1+(i-j)\}\le\min\{r_j-k+1-(i-j)\},j\le i
\]
\[\max\{l_j+k-1+(j-i)\}\le\min\{r_j-k+1-(j-i)\},j\ge i
\]

发现两个 \(\max,\min\) 中与 \(j\) 相关的分别为 \(l_j-j,r_j+j,l_j+j,r_j-j\),RMQ 即可。

时间复杂度 \(O(n\log n)\)

另一个结论是 \(f_{i-1}-1\le f_i\le f_{i-1}+1\)(第 \(i-1\) 行变为 \(0\) 的下一时刻第 \(i\) 行一定都是 \(0\))。因此 \(k\) 不用二分,从 \(f_{i-1}-1\) 开始枚举即可,如果当前 \(k\) 不合法,则 \(f_i=k-1\),否则 \(k\leftarrow k+1\)。

考虑单调队列做到 \(O(n)\) RMQ。

对于 \(j\ge i\) 的情况,第 \(i-1\) 行 \(j\) 的区间为 \([i-1,(i-1)+(k+1)-1]\),扩展到第 \(i\) 行时变为 \([i,i+k-1]\),\(i,k\) 变大时左右端点都单调,普通单调队列。

对于 \(j\le i\),区间为 \([(i-1)-(k+1)+1,i-1]\) 变到 \([i-k+1,i]\),左端点不具有单调性。发现 \(k\) 最多变大两次,因此强制令左端点单调,对于没有考虑到的点(最多两个)特判即可。

code
const int N = 5e6+5, mod = 998244353;
int L,X,Y;
ULL A,B; int n,m,l[N],r[N],f[N];
LL ans; struct Que {
int fro,rea,que[N];
Que() { fro = 1, rea = 0; }
int front() { return que[fro]; }
int back() { return que[rea]; }
void push_back(int x) { que[++rea] = x; }
void pop_back() { --rea; }
bool empty() { return fro>rea; }
void valid(int l) { while( fro<=rea && que[fro] < l ) ++fro; }
} ul,ur,dl,dr; namespace data {
typedef unsigned long long u64;
u64 xorshift128p(u64 &A, u64 &B) { u64 T = A, S = B; A = S; T ^= T << 23;
T ^= T >> 17; T ^= S ^ (S >> 26); B = T; return T + S; }
void gen(int n, int L, int X, int Y, u64 A, u64 B, int l[], int r[]) {
for (int i = 1; i <= n; i ++) { l[i] = xorshift128p(A, B) % L + X;
r[i] = xorshift128p(A, B) % L + Y; if (l[i] > r[i]) swap(l[i], r[i]); } }
} signed main() {
read(n,L,X,Y,A,B); data::gen(n,L,X,Y,A,B,l,r);
f[1] = 1;
For(i,2,n) For(k,max(f[i-1],2),f[i-1]+2) { int j = i+k-1;
ul.valid(i-k+1), ur.valid(i-k+1), dl.valid(i), dr.valid(i);
while( !ul.empty() && l[i]+i >= l[ul.back()]+ul.back() ) ul.pop_back();
while( !ur.empty() && r[i]-i <= r[ur.back()]-ur.back() ) ur.pop_back();
while( !dl.empty() && l[j]-j >= l[dl.back()]-dl.back() ) dl.pop_back();
while( !dr.empty() && r[j]+j <= r[dr.back()]+dr.back() ) dr.pop_back();
ul.push_back(i), ur.push_back(i), dl.push_back(j), dr.push_back(j);
int le = l[ul.front()]+ul.front()-i+k-1,
ri = r[ur.front()]-ur.front()+i-k+1;
ckmax(le,l[dl.front()]-dl.front()+i+k-1),
ckmin(ri,r[dr.front()]+dr.front()-i-k+1);
if( k > f[i-1] )
ckmax(le,l[i-k+1]+i-k+1-i+k-1), ckmin(ri,r[i-k+1]-(i-k+1)+i-k+1);
if( k > f[i-1]+1 )
ckmax(le,l[i-k+2]+i-k+2-i+k-1), ckmin(ri,r[i-k+2]-(i-k+2)+i-k+1);
if( le > ri ) { f[i] = k-1; break; }
}
for(LL i = 1, pw = 1; i <= n; ++i, pw = pw*3%mod) ans += pw * f[i] %mod;
write(ans%mod);
return iocl();
}

2021秋 noip 模拟赛的更多相关文章

  1. NOIP模拟赛20161022

    NOIP模拟赛2016-10-22 题目名 东风谷早苗 西行寺幽幽子 琪露诺 上白泽慧音 源文件 robot.cpp/c/pas spring.cpp/c/pas iceroad.cpp/c/pas ...

  2. contesthunter暑假NOIP模拟赛第一场题解

    contesthunter暑假NOIP模拟赛#1题解: 第一题:杯具大派送 水题.枚举A,B的公约数即可. #include <algorithm> #include <cmath& ...

  3. NOIP模拟赛 by hzwer

    2015年10月04日NOIP模拟赛 by hzwer    (这是小奇=> 小奇挖矿2(mining) [题目背景] 小奇飞船的钻头开启了无限耐久+精准采集模式!这次它要将原矿运到泛光之源的矿 ...

  4. 大家AK杯 灰天飞雁NOIP模拟赛题解/数据/标程

    数据 http://files.cnblogs.com/htfy/data.zip 简要题解 桌球碰撞 纯模拟,注意一开始就在袋口和v=0的情况.v和坐标可以是小数.为保险起见最好用extended/ ...

  5. 队爷的讲学计划 CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的讲学计划 题解:刚开始理解题意理解了好半天,然后发 ...

  6. 队爷的Au Plan CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的Au%20Plan 题解:看了题之后觉得肯定是DP ...

  7. 队爷的新书 CH Round #59 - OrzCC杯NOIP模拟赛day1

    题目:http://ch.ezoj.tk/contest/CH%20Round%20%2359%20-%20OrzCC杯NOIP模拟赛day1/队爷的新书 题解:看到这题就想到了 poetize 的封 ...

  8. CH Round #58 - OrzCC杯noip模拟赛day2

    A:颜色问题 题目:http://ch.ezoj.tk/contest/CH%20Round%20%2358%20-%20OrzCC杯noip模拟赛day2/颜色问题 题解:算一下每个仆人到它的目的地 ...

  9. CH Round #52 - Thinking Bear #1 (NOIP模拟赛)

    A.拆地毯 题目:http://www.contesthunter.org/contest/CH%20Round%20%2352%20-%20Thinking%20Bear%20%231%20(NOI ...

随机推荐

  1. include 与 Widget

    include :include 引入的页面动态加载数据时,需要在当前页面中写数据加载,而不是只在引入的页面中就可以了:

  2. Docker 网络解读

    Docker 容器在运行时,会涉及多个容器相互连接,甚至与宿主机上的应用连接的问题.既然需要产生连接,那么就必然要依赖网络. 网络在Docker的技术体系中,是一个不容易搞清楚的要点.因此,希望您读完 ...

  3. 流量加密-Kali使用Openssl反弹shell

    Kali使用Openssl反弹shell 前言 之前在护网的时候,如果流量中有明文的敏感信息,譬如攻击特征,是很容易被IDS检测出来的,此时红队的攻击行为就会暴露.这是非常危险的一件事.今天我们通过本 ...

  4. 手把手和你一起实现一个Web框架实战——EzWeb框架(三)[Go语言笔记]Go项目实战

    手把手和你一起实现一个Web框架实战--EzWeb框架(三)[Go语言笔记]Go项目实战 代码仓库: github gitee 中文注释,非常详尽,可以配合食用 本篇代码,请选择demo3 这一篇文章 ...

  5. Python - typing 模块 —— Callable

    前言 typing 是在 python 3.5 才有的模块 前置学习 Python 类型提示:https://www.cnblogs.com/poloyy/p/15145380.html 常用类型提示 ...

  6. 题解 Walker

    传送门 总觉得有个柿子可以推--然而没推出来 考试的时候有个柿子假了导致我没想用两个点可以解出一组参数的事 假掉的柿子告诉我有不少东西能消掉 然而实际上随便选两个点高斯消元解出一组参数,再代入验证看够 ...

  7. msp432搭建平衡小车(二)

    前言 上一节掌握了使用pwm驱动电机,接下来介绍如何使用msp432读取mpu6050数据 正文 首先我们得知道mpu6050通信方式,由于mpu6050只能用i2c通信,所以学会使用msp432的i ...

  8. idea中Jrebe热部署l的安装和激活

    安装上这个插件,就不需要再改代码后重复启动服务了,还是很方便的!!! 一.在Idea中,打开File-------->Settings-------->Plugins里面的MarketPl ...

  9. JdbcTemplateUtils

    package com.meeno.common.utils; import com.alibaba.fastjson.JSONArray; import com.alibaba.fastjson.J ...

  10. Jpa-操作mongodb

    pom <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spr ...