考虑一个经典的问题:

询问从某个点出发,走 k 步到达其它各点的方案数?

这个问题可以转化为矩阵相乘,所以矩阵快速幂即可解决。

本题思路:

矩阵经典问题:求从i点走k步后到达j点的方案数(mod p)。

本题输出X/Y,可以看成X是u走k步到j的方案数,Y是从u走k步的所有方案数

于是对矩阵先进行处理,即给m[i][j]乘上节点i的出度的1e9+5次方。

AC代码:

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 56
#define inf 1e12
ll n,m;
ll g[N];
struct Matrix{
ll m[N][N];
}matrix;
Matrix Mul(Matrix a,Matrix b){
Matrix res;
for(ll i=;i<=n;i++){
for(ll j=;j<=n;j++){
res.m[i][j]=;
for(ll k=;k<=n;k++){
res.m[i][j]=(res.m[i][j]+(a.m[i][k]*b.m[k][j]))%MOD;
}
}
}
return res;
}
Matrix fastm(Matrix a,ll b){
Matrix res;
memset(res.m,,sizeof(res.m));
for(ll i=;i<=n;i++){
res.m[i][i]=;
}
while(b){
if(b&){
res = Mul(res,a);
}
a=Mul(a,a);
b>>=;
}
return res;
}
ll pow_mod(ll a,ll b){
if(b==) return %MOD;
ll tt = pow_mod(a,b>>);
ll ans = tt * tt % MOD;
if(b&) ans = ans * a %MOD;
return ans; }
int main()
{
while(scanf("%I64d%I64d",&n,&m)==){
memset(g,,sizeof(g));
for(ll i=;i<m;i++){
ll a,b;
scanf("%d%d",&a,&b);
matrix.m[a][b]++;
g[a]++;
} for(ll i=;i<=n;i++){
for(ll j=;j<=n;j++){
matrix.m[i][j]=(matrix.m[i][j]*(ll)pow_mod(g[i],1e9+)%MOD)%MOD;
}
} ll q;
scanf("%I64d",&q);
while(q--){
ll u,k;
scanf("%I64d%I64d",&u,&k);
Matrix tmp = fastm(matrix,k);
for(ll i=;i<=n;i++){
printf("%I64d ",tmp.m[u][i]%MOD);
}
printf("\n");
} }
return ;
}

hdu 5607 graph (矩阵乘法快速幂)的更多相关文章

  1. Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)

    /* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...

  2. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

  3. HDU 5607 graph 矩阵快速幂 + 快速幂

    这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...

  4. ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...

  5. 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2

    1732 Fibonacci数列 2  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 在“ ...

  6. codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数

    对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...

  7. [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>

    题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...

  8. [codevs]1250斐波那契数列<矩阵乘法&快速幂>

    题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...

  9. 【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2745  Solved: 1694[Submit][Statu ...

随机推荐

  1. Headroom.js

    下载 Development (3.7kB) Production (1.7kB) Headroom.js 是什么? Headroom.js 是一个轻量级.高性能的JS小工具(不依赖任何工具库!),它 ...

  2. Clone Graph 解答

    Question Clone an undirected graph. Each node in the graph contains a label and a list of its neighb ...

  3. poj 2411 新写法

    别以为我在刷水题.... 今天做了场srm,500pt想到了是dp但是无从下手,但是看了rng_58的神代码后顿觉海阔天空啊(盯着看了一个下午),相比于一年前的写法,真的是不忍直视啊, TC真是个好地 ...

  4. 利用Python完成一个小游戏:随机挑选一个单词,并对其进行乱序,玩家要猜出原始单词

    一 Python的概述以及游戏的内容 Python是一种功能强大且易于使用的编程语言,更接近人类语言,以至于人们都说它是“以思考的速度编程”:Python具备现代编程语言所应具备的一切功能:Pytho ...

  5. java的System.getProperty()方法能够获取的值

    java.version Java 执行时环境版本号 java.vendor Java 执行时环境供应商 java.vendor.url Java 供应商的 URL java.home Java 安装 ...

  6. SQL DCL数据控制语言,用来定义訪问权限和安全级别;

    DCL 1. 创建用户 * CREATE USER username@IP地址 IDENTIFIED BY 'password'; > 用户仅仅能在指定的IP地址上登录 * CREATE USE ...

  7. 3GP文件格式研究

    需要看的文档 http://www.3gpp.org/ftp/Specs/archive/26_series/ 3GPP TS 26.233 3GPP TS 26.243 3GPP TS 26.244 ...

  8. PHP学习笔记1.2——预定义变量参考

    预定义变量和用户自定义变量在使用上没有区别,大多数预定义变量的执行结果都是服务器的相关信息(如:版本号.路径.错误参数等),所以我们很少将其用于网站前台开发,如果被别有用心得人知道了后,会严重威胁服务 ...

  9. UVA 1212 Duopoly

    题目: 两个公司进行投标,竞争一些channels,每个投标可以包含多个channels,且都有一定的收益,每一个channels只能为其中的一个公司利用,同时保证一个公司给出的投标中选中的chann ...

  10. SQL创建/修改数据库、表

    --创建表 create table 表(a1 varchar(10),a2 char(2)) --为表添加描述信息 EXECUTE sp_addextendedproperty N'MS_Descr ...