考虑一个经典的问题:

询问从某个点出发,走 k 步到达其它各点的方案数?

这个问题可以转化为矩阵相乘,所以矩阵快速幂即可解决。

本题思路:

矩阵经典问题:求从i点走k步后到达j点的方案数(mod p)。

本题输出X/Y,可以看成X是u走k步到j的方案数,Y是从u走k步的所有方案数

于是对矩阵先进行处理,即给m[i][j]乘上节点i的出度的1e9+5次方。

AC代码:

 #pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<math.h>
#include<algorithm>
#include<queue>
#include<set>
#include<bitset>
#include<map>
#include<vector>
#include<stdlib.h>
using namespace std;
#define ll long long
#define eps 1e-10
#define MOD 1000000007
#define N 56
#define inf 1e12
ll n,m;
ll g[N];
struct Matrix{
ll m[N][N];
}matrix;
Matrix Mul(Matrix a,Matrix b){
Matrix res;
for(ll i=;i<=n;i++){
for(ll j=;j<=n;j++){
res.m[i][j]=;
for(ll k=;k<=n;k++){
res.m[i][j]=(res.m[i][j]+(a.m[i][k]*b.m[k][j]))%MOD;
}
}
}
return res;
}
Matrix fastm(Matrix a,ll b){
Matrix res;
memset(res.m,,sizeof(res.m));
for(ll i=;i<=n;i++){
res.m[i][i]=;
}
while(b){
if(b&){
res = Mul(res,a);
}
a=Mul(a,a);
b>>=;
}
return res;
}
ll pow_mod(ll a,ll b){
if(b==) return %MOD;
ll tt = pow_mod(a,b>>);
ll ans = tt * tt % MOD;
if(b&) ans = ans * a %MOD;
return ans; }
int main()
{
while(scanf("%I64d%I64d",&n,&m)==){
memset(g,,sizeof(g));
for(ll i=;i<m;i++){
ll a,b;
scanf("%d%d",&a,&b);
matrix.m[a][b]++;
g[a]++;
} for(ll i=;i<=n;i++){
for(ll j=;j<=n;j++){
matrix.m[i][j]=(matrix.m[i][j]*(ll)pow_mod(g[i],1e9+)%MOD)%MOD;
}
} ll q;
scanf("%I64d",&q);
while(q--){
ll u,k;
scanf("%I64d%I64d",&u,&k);
Matrix tmp = fastm(matrix,k);
for(ll i=;i<=n;i++){
printf("%I64d ",tmp.m[u][i]%MOD);
}
printf("\n");
} }
return ;
}

hdu 5607 graph (矩阵乘法快速幂)的更多相关文章

  1. Qbxt 模拟赛 Day4 T2 gcd(矩阵乘法快速幂)

    /* 矩阵乘法+快速幂. 一开始迷之题意.. 这个gcd有个规律. a b b c=a*x+b(x为常数). 然后要使b+c最小的话. 那x就等于1咯. 那么问题转化为求 a b b a+b 就是斐波 ...

  2. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

  3. HDU 5607 graph 矩阵快速幂 + 快速幂

    这道题得到了学长的助攻,其实就是一个马尔科夫链,算出一步转移矩阵进行矩阵快速幂就行了,无奈手残 这是我第一回写矩阵快速幂,写的各种毛病,等到调完了已经8点44了,交了一发,返回PE,(发现是少了换行) ...

  4. ACM学习历程—HDU5667 Sequence(数论 && 矩阵乘法 && 快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=5667 这题的关键是处理指数,因为最后结果是a^t这种的,主要是如何计算t. 发现t是一个递推式,t(n) = c ...

  5. 矩阵乘法快速幂 codevs 1732 Fibonacci数列 2

    1732 Fibonacci数列 2  时间限制: 1 s  空间限制: 128000 KB  题目等级 : 钻石 Diamond 题解  查看运行结果     题目描述 Description 在“ ...

  6. codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数

    对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些 ...

  7. [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>

    题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...

  8. [codevs]1250斐波那契数列<矩阵乘法&快速幂>

    题目描述 Description 定义:f0=f1=1, fn=fn-1+fn-2(n>=2).{fi}称为Fibonacci数列. 输入n,求fn mod q.其中1<=q<=30 ...

  9. 【BZOJ-1009】GT考试 KMP+DP+矩阵乘法+快速幂

    1009: [HNOI2008]GT考试 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 2745  Solved: 1694[Submit][Statu ...

随机推荐

  1. android连续点击两次返回键退出代码

    private long exitTime = 0; @Overridepublic boolean onKeyDown(int keyCode, KeyEvent event) { if(keyCo ...

  2. convertView

    [convertView] 参考:https://zhidao.baidu.com/question/423895201122905772.html

  3. Unity屏幕射线碰撞

    Layers层: 从Layers设置看来,最多支持32层.  图层的值开始依次 0^2,1^2, 2^2, 3^3 依次增加. 当摄像机Culling Mask属性 Nothing= –1 Eveni ...

  4. mime大全收集

    {"ai", "application/postscript"},     {"aif", "audio/x-aiff" ...

  5. ORACLE数据库不同故障下的恢复总结

    ORACLE数据库不同故障下的恢复总结1. 非归档模式下丢失或损坏的文件--1.1 数据文件--启动数据库的状态到MOUNT--恢复方法:通过之前创建的数据库完整备份,修复整个数据库,不过备份之后发生 ...

  6. W3C-XML

    XML XML Extensible Markup Language,可扩展标记语言 1 XML和HTML的区别 XML主要用来传输数据 HTML主要用来呈现数据内容 2 XML的主要用途 传输数据 ...

  7. UVA 1212 Duopoly

    题目: 两个公司进行投标,竞争一些channels,每个投标可以包含多个channels,且都有一定的收益,每一个channels只能为其中的一个公司利用,同时保证一个公司给出的投标中选中的chann ...

  8. 【熊猫】POS销售

    select a.itemcode,b.itemname,b.spec,b.unit,b.rprice,sum(a.rqty) rqtyfrom tm_possale_detail a,sys_ite ...

  9. CheckStyle插件

    如今代码静态检查越来越重要,已经成为构建高质量软件的不可或缺的一个验证步骤.如果你使用的是java语言,那么CheckStyle则是一个利器. CheckStyle能够帮助程序员检查代码是否符合制定的 ...

  10. thinkPHP入门 一

    简介 ThinkPHP是一个快速.简单的基于MVC和面向对象的轻量级PHP开发框架,遵循Apache2开源协议发布,从诞生以来一直秉承简洁实用的设计原则,在保持出色的性能和至简的代码的同时,尤其注重开 ...