题目链接

给一个有向图, 问你最多可以加多少条边, 使得加完边后的图不是一个强连通图。

只做过加多少条边变成强连通的, 一下子就懵逼了

我们可以反过来想。

最后的图不是强连通, 那么我们一定可以将它分成两部分, 两部分中, 每一部分都是一个强连通分量。 然后两部分连接的情况一定是一部分的每个点向另一部分的每个点连边, 而没有反向边。 这样才能保证边数最多并且不是强连通。

我们设一部分点数为x, 另一部分为y。 那么显然x+y == n.

总点数为 x*(x-1) + y*(y-1)+xy。 前两项是每一部分内部的边数, 第三项是两部分之间的边。 化简完之后为n*n-n-xy.  所以我们要想答案越大, xy就越小。 要想xy越小, 显然x, y的差值应该尽可能大。

所以我们将原图缩点, 找到点数最少的一个联通块, 将它作为x。 剩下的所有点作为y。 然后问题就解决了。

#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
const int maxn = 1e5+;
int n, m, head[maxn], in[maxn], out[maxn], cnt, num, top, deep;
int scnt[maxn], s[maxn], low[maxn], dfn[maxn], st[maxn], instack[maxn];
pll ed[maxn];
struct node
{
int u, nextt, to;
}e[maxn*];
void tarjan(int u) {
dfn[u] = low[u] = ++deep;
instack[u] = ;
st[++top] = u;
for(int i = head[u]; ~i; i = e[i].nextt) {
int v = e[i].to;
if(!dfn[v]) {
tarjan(v);
low[u] = min(low[u], low[v]);
} else if(instack[v]) {
low[u] = min(low[u], dfn[v]);
}
}
if(low[u] == dfn[u]) {
int v;
cnt++;
do {
v = st[top--];
instack[v] = ;
s[v] = cnt;
scnt[cnt]++;
} while (v != u);
}
}
void solve() {
for(int i = ; i <= n; i++)
if(!dfn[i])
tarjan(i);
if(cnt == ) {
puts("-1");
return ;
}
for(int i = ; i<m; i++) {
int u = s[ed[i].fi], v = s[ed[i].se];
if(u == v)
continue;
in[v]++;
out[u]++;
}
int ans = inf;
for(int i = ; i <= cnt; i++) {
if(in[i] == || out[i] == ) {
ans = min(ans, scnt[i]);
}
}
ll sum = 1LL*(n-)*n;
sum -= m;
sum -= 1LL * ans * (n - ans);
printf("%I64d\n", sum);
return ;
}
void add(int u, int v) {
e[num].to = v, e[num].nextt = head[u], head[u] = num++;
}
void init() {
mem1(head);
num = top = deep = cnt = ;
mem(instack);
mem(scnt);
mem(dfn);
mem(in);
mem(out);
}
void read() {
init();
cin>>n>>m;
int u, v;
for(int i = ; i < m; i++) {
scanf("%d%d", &u, &v);
ed[i] = mk(u, v);
add(u, v);
}
}
int main()
{
int t;
cin>>t;
for(int casee = ; casee <= t; casee++) {
read();
printf("Case %d: ", casee);
solve();
}
return ;
}

hdu 4635 Strongly connected 强连通的更多相关文章

  1. hdu 4635 Strongly connected 强连通缩点

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给你一个n个点m条边的图,问在图不是强连通图的情况下,最多可以向图中添多少条边,若图为原来 ...

  2. HDU 4635 Strongly connected(强连通)经典

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  3. HDU 4635 Strongly connected (强连通分量)

    题意 给定一个N个点M条边的简单图,求最多能加几条边,使得这个图仍然不是一个强连通图. 思路 2013多校第四场1004题.和官方题解思路一样,就直接贴了~ 最终添加完边的图,肯定可以分成两个部X和Y ...

  4. HDU 4635 Strongly connected (强连通分量+缩点)

    <题目链接> 题目大意: 给你一张有向图,问在保证该图不能成为强连通图的条件下,最多能够添加几条有向边. 解题分析: 我们从反面思考,在该图是一张有向完全图的情况下,最少删去几条边能够使其 ...

  5. HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】

    Strongly connected Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

  6. HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  7. HDU 4635 Strongly connected (Tarjan+一点数学分析)

    Strongly connected Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

  8. hdu 4635 Strongly connected(强连通)

    考强连通缩点,算模板题吧,比赛的时候又想多了,大概是不自信吧,才开始认真搞图论,把题目想复杂了. 题意就是给你任意图,保证是simple directed graph,问最多加多少条边能使图仍然是si ...

  9. HDU 4635 Strongly connected(强连通分量,变形)

    题意:给出一个有向图(不一定连通),问最多可添加多少条边而该图仍然没有强连通. 思路: 强连通分量必须先求出,每个强连通分量包含有几个点也需要知道,每个点只会属于1个强连通分量. 在使图不强连通的前提 ...

随机推荐

  1. C#文件读写操作

    方法1:使用FileStream读写文件 using System;using System.Collections.Generic;using System.Text;using System.IO ...

  2. thbgm拆包【in progress】

    曾经在网上找过但是没找到过....关于东方系列bgm的格式,最初以为是个加密格式,后来听说是多个wav堆到一块儿的.再后来查到有说可以用GoldWave开的.今天试了试成功了.接下来打算研究一下,不过 ...

  3. 机器学习(Machine Learning)

    从wiki开始:http://en.wikipedia.org/wiki/Machine_learning 今天看机器学习相关的文章, 了解了一下opencv中机器学习功能比较多了 (http://d ...

  4. linux 让一个程序开机自启动并把一个程序加为服务

    本文以tomcat7为例 首先找到tomcat启动的目录,我的为 cd /usr/local/tomcat7/bin/ 这个目录 启动脚本是startup.sh 然后在/etc/rc.d/rc.loc ...

  5. virtualBox 安装CentOS 全屏

    在VirtualBox里安装CentOS系统,会遇到“增强工具”无法正常安装,主要的原因是出在Kernel 库找不到. 错误提示如下: 通过查看日志文件: cat /var/log/vboxadd-i ...

  6. Python学习笔记(三)Python的list和tuple

    list list类似其他语言中的数组,是一种有序的集合,可以随时添加和删除其中的元素. 使用len()函数可以获得list元素的个数. list的索引从0开始,当超出范围时会报IndexError错 ...

  7. Session和Cookie的关系

    Session和Cookie关系 两者构建了web的回话数据 Cookie作为客户端的回话,Session为服务器端的 共同点: 都是1对1的,(一个客户一个独立的回话) 都以键值对的方式存储数据 都 ...

  8. [方法] Windows 下SSH远程连接Linux

    考虑到Linux服务器自带SSH服务,并且SSH服务开机启动. 因此,方法如下: 安装putty 输入Linux服务器IP地址 此外,如果想远程重启Linux服务器,在命令行中输入reboot即可.

  9. WampServer下如何实现多域名配置

    原文:WampServer下如何实现多域名配置 之前在学习跨域的时候,我写过一篇叫做WampServer下使用多端口访问的文章,默认的 localhost 采用的是 80 端口,能使用多端口访问的核心 ...

  10. EditPlus自动执行出结果设置