构造方程 (x + m * s) - (y + n * s) = k * l(k = 0, 1, 2,...)

变形为 (n-m) * s + k * l = x - y。即转化为模板题,a * x + b * y = n,是否存在整数解。

#include <iostream>

using namespace std;

#define LL long long

LL gcd(LL a, LL b)
{
    return b ? gcd(b, a%b) : a;
}

//find x, y that satisfied the equation ax+by=d, which minimize the {|x|+|y|}. ps:d = gcd(a,b).
void exgcd(LL a, LL b, LL &d, LL &x, LL &y)
{
    if (!b)
    {
        d = a, x = 1, y = 0;
    }
    else
    {
        exgcd(b, a %b, d, y, x);
        y -= x * (a / b);
    }
}
//1、先计算Gcd(a, b),若n不能被Gcd(a, b)整除,则方程无整数解;否则,在方程两边同时除以Gcd(a, b),得到新的不定方程a' * x + b' * y = n',此时Gcd(a', b')=1;
//2、利用上面所说的欧几里德算法求出方程a' * x + b' * y = 1的一组整数解x0, y0,则n' * x0,n' * y0是方程a' * x + b' * y = n'的一组整数解;
//3、根据数论中的相关定理,可得方程a' * x + b' * y = n'的所有整数解为:
//x = n' * x0 + b' * t
//y = n' * y0 - a' * t
//(t为整数)
bool getans(LL a, LL b, LL c, LL &ans)// ax + by = c 最小整数解
{
    LL r = gcd(a, b), y0;
    if (c%r)//no solutions
    {
        return false;
    }

a /= r, b /= r, c /= r;

exgcd(a, b, r, ans, y0);//至此,上面的说明解决了

LL t = c * ans / b;
    ans = c * ans - t * b;

/*此时方程的所有解为:x = c*ans - b*t, x的最小的可能值是0
    令x = 0可求出当x最小时的t的取值,但由于x = 0是可能的最小取值,实际上可能x根本取不到0
    那么由计算机的取整除法可知:由 t = c*k1 / b算出的t
    代回x = c*ans - b*t中,求出的x可能会小于0,此时令t = t + 1,求出的x必大于0;
    如果代回后x仍是大于等于0的,那么不需要再做修正。*/

if (ans < 0)
    {
        ans += b;
    }
    return true;
}

int main()
{
    LL x, y, m, n, L;
    while (cin >> x >> y >> m >> n >> L)
    {
        LL a = n - m, b = L, c = x - y;
        LL ans;
        bool flag = getans(a, b, c, ans);
        if (!flag)
        {
            cout << "Impossible" << endl;
            continue;
        }
        cout << ans << endl;
    }
}

poj1061的更多相关文章

  1. 欧几里德&扩展以及求解线性方程学习总结--附上poj1061解题报告

    欧几里德算法: 欧几里德就是辗转相除法,调用这个gcd(a,b)这个函数求解a,b的最大公约数 公式: gcd(a,b)=gcd(b,a%b):并且gcd(a,b)=gcd(b,a)=gcd(-a,b ...

  2. POJ-1061 青蛙的约会---扩展欧几里得算法

    题目链接: https://cn.vjudge.net/problem/POJ-1061 题目大意: 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线 ...

  3. [POJ1845&POJ1061]扩展欧几里得应用两例

    扩展欧几里得是用于求解不定方程.线性同余方程和乘法逆元的常用算法. 下面是代码: function Euclid(a,b:int64;var x,y:int64):int64; var t:int64 ...

  4. POJ1061 青蛙的约会 —— 扩展gcd

    题目链接:https://vjudge.net/problem/POJ-1061 青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submi ...

  5. poj1061(扩展欧基里德定理)

    题目链接:https://vjudge.net/problem/POJ-1061 题意:在一个首位相接的坐标轴上,A.B开始时分别位于X,Y处,每个单位时间向右移动m,n米,问是否能相遇,坐标轴长L. ...

  6. POJ1061青蛙的约会[扩展欧几里得]

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 108911   Accepted: 21866 Descript ...

  7. 【poj1061】 青蛙的约会

    http://poj.org/problem?id=1061 (题目链接) 题意 两只青蛙在周长为L的球上沿一条直线向一个方向跳,每只每次分别跳m,n米,它们一开始分别在X,Y处,问跳几次两青蛙可以在 ...

  8. POJ1061 青蛙的约会

    Description 两 只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它 们出发之前忘记了一件很重要 ...

  9. poj1061 Exgcd

    #include<iostream> #include<cstdio> #include<algorithm> #include<cmath> usin ...

  10. POJ1061 青蛙的约会-拓展欧几里得

    Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事 ...

随机推荐

  1. vs2013 中HTML页 无法在设计窗口中查看的解决

    VS2013不支持HTML文件的解决办法: 1.将html文件重命名为aspx即可.不需要创建项目,直接拖进vs即可. 2.打开VS菜单->工具->选项->文本编辑器->文件扩 ...

  2. String字符串需要掌握的几个问题

    一.两种定义方式的区别: String str = "hello";      先在堆内存中查找是否已经有"hello",若有,将str指向已存在的它即可:若堆 ...

  3. day3_python学习笔记_chapter5_数字

    1. 整形的表示范围-2^32~2^32 - 1 : 长整形表示:aLong = 99999L 2. 复数的属性, num.real,该复数的实部, num.imag,该复数的虚部.num.conju ...

  4. 启动tomcat的时候,服务器暂停到装载mysql驱动文件的原因

    1.使用spring+mybatis,由于mybatis的配置文件中jdbc类型的错误使得,tomcat无法正常启动,在编写mybatis一定确保jdbc类型,java类型正确,jdbc类型要大写! ...

  5. Notepad++使用技法

    Alt+H 隐藏行 Ctrl+Tab  实现在多个打开的窗口间切换 Ctrl+Shift+Q区块注释 Ctrl+K行注释(取消Ctrl+Shift+K) 文件  新建文件 Ctrl+N  打开文件 C ...

  6. 批量修改文件名java

    package test0715; import java.io.File; public class FileRename {public static void main(String[] arg ...

  7. 个人收集资料整理-WinForm

    [2016-03-23 20:29:56] 别人收集常用: http://www.cnblogs.com/babycool/p/3541192.html

  8. req.body取不到值的问题;

    随着express升级,bodyParser从express中被分离了出来,因此,在使用express新版本的时候,需要npm install body-parser 来安装bodyParser. 在 ...

  9. 纯JavaScript实现HTML5 Canvas六种特效滤镜

    纯JavaScript实现HTML5 Canvas六种特效滤镜  小试牛刀,实现了六款简单常见HTML5 Canvas特效滤镜,并且封装成一个纯 JavaScript可调用的API文件gloomyfi ...

  10. CFileDialog 打开文件夹文件 保存文件夹文件

    格式说明: explicit CFileDialog(    BOOL bOpenFileDialog,                         //TRUE 为打开, FALSE 为保存 L ...