BZOJ2045: 双亲数
2045: 双亲数
Time Limit: 10 Sec Memory Limit: 259 MB
Submit: 602 Solved: 275
[Submit][Status]
Description
小D是一名数学爱好者,他对数字的着迷到了疯狂的程度。
我们以d = gcd(a, b)表示a、b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描述,此时,我们称有序数对(a, b)为d的双亲数。
与正常双亲不太相同的是,对于同一个d,他的双亲太多了 >_<
比如,(4, 6), (6, 4), (2, 100)都是2的双亲数。
于是一个这样的问题摆在眼前,对于0 < a <= A, 0 < b <= B,有多少有序数对(a, b)是d的双亲数?
Input
Output
Sample Input
5 5 2
Sample Output
【样例解释】
满足条件的三对双亲数为(2, 2) (2, 4) (4, 2)
HINT
对于100%的数据满足0 < A, B < 10^ 6
Source
题解:
POI ZAP的弱化版,不用分块,线性筛+枚举即可。
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 1000000+1000
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
ll n,m,d,mx,tot,mu[maxn],p[maxn];
bool check[maxn];
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();m=read();d=read();n/=d;m/=d;
mu[]=;mx=min(n,m);
for2(i,,mx)
{
if(!check[i]){p[++tot]=i;mu[i]=-;}
for1(j,tot)
{
int k=i*p[j];
if(k>mx)break;
check[k]=;
if(i%p[j]==){mu[k]=;break;}
else mu[k]=-mu[i];
}
}
ll ans=;
for1(i,mx)ans+=mu[i]*(n/i)*(m/i);
printf("%lld\n",ans);
return ;
}
BZOJ2045: 双亲数的更多相关文章
- [BZOJ2045]双亲数(莫比乌斯反演)
双亲数 Time Limit: 10 Sec Memory Limit: 259 MBSubmit: 959 Solved: 455[Submit][Status][Discuss] Descri ...
- 【BZOJ2045】双亲数 莫比乌斯反演
[BZOJ2045]双亲数 Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用 ...
- bzoj 2045: 双亲数
2045: 双亲数 Description 小D是一名数学爱好者,他对数字的着迷到了疯狂的程度. 我们以d = gcd(a, b)表示a.b的最大公约数,小D执著的认为,这样亲密的关系足可以用双亲来描 ...
- 【题解】Luogu P4450 双亲数
原题传送门 这题需要运用莫比乌斯反演(懵逼钨丝繁衍) 设F(t)表示满足gcd(x,y)%t=0的数对个数,f(t)表示满足gcd(x,y)=t的数对个数,实际上答案就是f(d) 这就满足莫比乌斯反演 ...
- P4450 双亲数
思路 同zap-queries 莫比乌斯反演的板子 数据范围小到不用整除分块... 代码 #include <cstdio> #include <algorithm> #inc ...
- JZYZOJ 1375 双亲数 莫比乌斯反演
http://172.20.6.3/Problem_Show.asp?id=1375 网上搜推理图. 有一段没有写莫比乌斯反演都快忘了..数学能力--,定理完全不会推,但是这道题整体来说应该是比较好写 ...
- 洛谷 - P4450 - 双亲数 - 整除分块
https://www.luogu.org/fe/problem/P4450 应该不分块也可以. 求\(F(n,m,d)=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^ ...
- [P4450] 双亲数 - 莫比乌斯反演,整除分块
模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...
- LGOJ4450 双亲数
Description link \[\sum \limits_{i = 1}^A \sum \limits_{j = 1}^B [ \gcd(i, j) = d] \] 要\(O(\sqrt n)\ ...
随机推荐
- 总结QueueUserWorkItem传参的几种方式
最近在学习citrix的xenserver6.2的源代码,发现多处用到System.Threading命名空间下的ThreadPool.QueueUserWorkItem方法: public stat ...
- CCSpawn使用CCRepeatForever无效
在使用CCSpawn中加入CCRepeatForever,但却无法使用CCRepeatForever的效果. CCActionInterval* action =(CCActionInterval*) ...
- Linux驱动设备中的并发控制
一.基本概念 二.中断屏蔽 三.原子操作 四.自旋锁 五.信号量 六.互斥体 七.自旋锁与信号量的比较 Linux设备驱动中必须解决的一个问题是多个进程对共享资源的并发访问,并发的访问会导致竞态,即使 ...
- Linux 数据 CD 刻录
http://www.cyberciti.biz/tips/linux-burning-multi-session-cds-on-linux.html #mkisofs -dvd-video -inp ...
- (转)ASP.NET版本的Kindeditor插件的使用(同步)
昨天老大让我自己下载一个kindeditor说要放到“描述”功能中,并且不能提交(一边在textarea中写一边在label控件中将数据显示出来),由于从来没弄过,实在费了一翻劲.所以将此记录下来,一 ...
- 对于数据操作的SQL语句精粹(长期更新)
--删除空格 Update [Table] Set [Column]=Replace([Column],' ','') --查出左右和右边带空格的数据 select RTRIM( LTRIM([Col ...
- Oracle 执行计划(Explain Plan)
如果要分析某条SQL的性能问题,通常我们要先看SQL的执行计划,看看SQL的每一步执行是否存在问题. 如果一条SQL平时执行的好好的,却有一天突然性能很差,如果排除了系统资源和阻塞的原因,那么基本可以 ...
- Asp.Net--主题/皮肤文件
主题 是皮肤的集合.皮肤描述了控件应该如何显示,它可以定义样式的属性,图片,颜色等. 如果拥有多个主题,用户可以根据需要选择主题来显示站点,这只需要通过点击按钮,从一个皮肤切换到另一个皮肤. 皮肤文件 ...
- itext poi 学习之旅 (1)创建pdf
从零开始学习itext 创建pdf 1.用到流进行创建的pdf import java.io.File; import java.io.FileOutputStream; import com.ite ...
- 在eclipse中对于java的操作
1. 新建project new project --> java project -->input the name of the project and choose the jre ...