写在最前:

1.为什么学习并记录分布式设计理念一系列相关的东西

在日常工作中系统设计评审的时候,经常会有一些同事抛出一些概念,高可用性,一致性等等字眼,他们用这些最基本的概念去反驳系统最初的设计,但是很多人理解的可用性,一致性等等问题,都是自己拍脑袋想的,或者根本和最原始表达的意思就不是一个东西,在这种情况下PK,就像不再一个频段的人在交流,除了争论,没有任何实质性的进展,所以有必要熟悉其理论基础,以免贻笑大方。(其实类似的例子还有很多,国内的技术人员都喜欢把一些此词模糊化,混淆而谈。例如XX云,实际卖的就是vps 和一小部分saas,这就叫cloud computing?)

2.准备说哪些东西

分布式系统设计在评审时,争论得最多的地方,其实也就是著名的cap理论,本文也主要对CAP理论加以自己的理解和应用

CAP理论

什么是分布式系统

部分在不同的节点上,通过网络协同工作的系统叫做分布式系统

CAP分别代表什么

• Consistency
  • (all nodes see the same data at the same time)
• Availability
  • Reads and writes always succeed.
• Partition tolerance
  • (the system continues to operate despite arbitrary message loss or failure of part of the system)

一致性: 更新操作成功并返回客户端完成后,分布式的所有节点在同一时间的数据完全一致

可用性:     读和写操作都能成功

分区容错性:再出现网络故障导致分布式节点间不能通信时,系统能否继续服务

CAP的是什么关系

It states, that though its desirable to have Consistency, High-Availability and Partition-tolerance in every system, unfortunately no system can achieve all three at the same time.
在分布式系统的设计中,没有一种设计可以同时满足一致性,可用性,分区容错性 3个特性

注意:不要将弱一致性,最终一致性放到CAP理论里混为一谈(混淆概念的坑真多)
弱一致性,最终一致性 你可以认为和CAP的C一点关系也没有,因为CAP的C是更新操作完成后,任何节点看到的数据完全一致, 弱一致性。最终一致性本身和CAP的C一致性是违背的,所以你可以看到那些谎称自己系统同时具备CAP 3个特性是多么的可笑,可能国内更多的场景是:一个开放人员一旦走上讲台演讲,就立马转变为了营销人员,连最基本的理念也不要了
这里有一篇标题很大的文章  cap-twelve-years-later-how-the-rules-have-changed ,实际上本文的changed更多的是在思考方式上,而本身CAP理论是没有changed的

为什么会是这样

我们来看一个简单的问题, 一个DB服务   搭建在两个机房(北京,广州),两个DB实例同时提供写入和读取

1. 假设DB的更新操作是同时写北京和广州的DB都成功才返回成功
      在没有出现网络故障的时候,满足CA原则,C 即我的任何一个写入,更新操作成功并返回客户端完成后,分布式的所有节点在同一时间的数据完全一致, A 即我的读写操作都能够成功,但是当出现网络故障时,我不能同时保证CA,即P条件无法满足

2. 假设DB的更新操作是只写本地机房成功就返回,通过binlog/oplog回放方式同步至侧边机房
      这种操作保证了在出现网络故障时,双边机房都是可以提供服务的,且读写操作都能成功,意味着他满足了AP ,但是它不满足C,因为更新操作返回成功后,双边机房的DB看到的数据会存在短暂不一致,且在网络故障时,不一致的时间差会很大(仅能保证最终一致性)

3. 假设DB的更新操作是同时写北京和广州的DB都成功才返回成功且网络故障时提供降级服务
      降级服务,如停止写入,只提供读取功能,这样能保证数据是一致的,且网络故障时能提供服务,满足CP原则,但是他无法满足可用性原则

选择权衡

通过上面的例子,我们得知,我们永远无法同时得到CAP这3个特性,那么我们怎么来权衡选择呢?
选择的关键点取决于业务场景

对于大多数互联网应用来说(如网易门户),因为机器数量庞大,部署节点分散,网络故障是常态,可用性是必须需要保证的,所以只有设置一致性来保证服务的AP,通常常见的高可用服务吹嘘5个9 6个9服务SLA稳定性就本都是放弃C选择AP

对于需要确保强一致性的场景,如银行,通常会权衡CA和CP模型,CA模型网络故障时完全不可用,CP模型具备部分可用性,实际的选择需要通过业务场景来权衡(并不是所有情况CP都好于CA,只能查看信息不能更新信息有时候从产品层面还不如直接拒绝服务)

延伸

BASE(Basically Available, Soft State, Eventual Consistency  基本可用、软状态、最终一致性) 对CAP AP理论的延伸, Redis等众多系统构建与这个理论之上
ACID  传统数据库常用的设计理念, ACID和BASE代表了两种截然相反的设计哲学,分处一致性-可用性分布图谱的两极。

扩展阅读

Daniel Abadi认为  CAP  应该叫 PACELC   http://dbmsmusings.blogspot.jp/2010/04/problems-with-cap-and-yahoos-little.html
Brewer's CAP Theorem   http://www.julianbrowne.com/article/viewer/brewers-cap-theorem
Foundationdb 的CAP权衡选择  https://foundationdb.com/white-papers/the-cap-theorem

分布式系统设计权衡之CAP的更多相关文章

  1. CAP定理在分布式系统设计中的最新应用

    本文翻译自国外InfoQ和计算机杂志上一篇2012年旧文,本文就有关数据同步进行了讨论,特别关注业务事务的不变性与一致性如何在分布式系统中巧妙保证,探讨了长时间运行的事务的补偿机制.这些对分布式系统设 ...

  2. 从分布式一致性谈到CAP理论、BASE理论

    问题的提出 在计算机科学领域,分布式一致性是一个相当重要且被广泛探索与论证问题,首先来看三种业务场景. 1.火车站售票 假如说我们的终端用户是一位经常坐火车的旅行家,通常他是去车站的售票处购买车票,然 ...

  3. (二)从分布式一致性谈到CAP理论、BASE理论

    问题的提出 在计算机科学领域,分布式一致性是一个相当重要且被广泛探索与论证问题,首先来看三种业务场景. 1.火车站售票 假如说我们的终端用户是一位经常坐火车的旅行家,通常他是去车站的售票处购买车票,然 ...

  4. 分布式理论 BASE、CAP、ACID

    CAP原理: 在理论计算机科学中,CAP定理(CAP theorem),又被称作布鲁尔定理(Brewer's theorem),它指出对于一个分布式计算系统来说,不可能同时满足以下三点: 一致性(Co ...

  5. 分布式必备理论基础:CAP和BASE

    大家好,我是老三,今天是没有刷题的一天,心情愉悦,给大家分享两个简单的知识点:分布式理论中的CAP和BASE. CAP理论 什么是CAP CAP原则又称CAP定理,指的是在一个分布式系统中,Consi ...

  6. 【转】.NET Core 事件总线,分布式事务解决方案:CAP

    [转].NET Core 事件总线,分布式事务解决方案:CAP 背景 相信前面几篇关于微服务的文章也介绍了那么多了,在构建微服务的过程中确实需要这么一个东西,即便不是在构建微服务,那么在构建分布式应用 ...

  7. 【转】分布式事务,EventBus 解决方案:CAP【中文文档】

    [转]分布式事务,EventBus 解决方案:CAP[中文文档] 最新文档地址:https://github.com/dotnetcore/CAP/wiki 前言 很多同学想对CAP的机制以及用法等想 ...

  8. 【分布式】1、CAP原则(CAP定理)、BASE理论

    CAP原则又称CAP定理,指的是在一个分布式系统中, Consistency(一致性). Availability(可用性).Partition tolerance(分区容错性),三者不可得兼. CA ...

  9. .NET Core 事件总线,分布式事务解决方案:CAP

    背景 相信前面几篇关于微服务的文章也介绍了那么多了,在构建微服务的过程中确实需要这么一个东西,即便不是在构建微服务,那么在构建分布式应用的过程中也会遇到分布式事务的问题,那么 CAP 就是在这样的背景 ...

随机推荐

  1. java中文乱码解决之道(六)-----javaWeb中的编码解码

    在上篇博客中LZ介绍了前面两种场景(IO.内存)中的java编码解码操作,其实在这两种场景中我们只需要在编码解码过程中设置正确的编码解码方式一般而言是不会出现乱码的.对于我们从事java开发的人而言, ...

  2. C++的性能C#的产能?! - .Net Native 系列《一》:.NET Native安装和配置

    之前一文<c++的性能, c#的产能?!鱼和熊掌可以兼得,.NET NATIVE初窥> 获得很多朋友支持和鼓励,也更让我坚定做这项技术的推广者,希望能让更多的朋友了解这项技术,于是先从官方 ...

  3. Orchard 微软CMS项目介绍

    我之前的项目中使用了Orchard, 它依据依赖注入的思想而做的模块化让我深深为之着迷,这里开始宣传一下这个架构. 包含的概念非常之多,我现在也不甚了解.Orchard就是自己想控制它改变它的话需要非 ...

  4. Python调用C++的DLL

    import os import sys from ctypes import * test = cdll.LoadLibrary('D:\Python27\py.dll') print test.A ...

  5. 完全使用一组 DSL 来操作 Grid 控件

    最近尝试了一下将 XtraGrid 的初始化工作封装成内部 DSL,例如一个普通的基础数据的增删改查操作的代码会像下面这样: public partial class UserForm : XtraF ...

  6. [SDK2.2]Windows Azure Storage (15) 使用WCF服务,将本地图片上传至Azure Storage (上) 服务器端代码

    <Windows Azure Platform 系列文章目录> 这几天工作上的内容,把项目文件和源代码拿出来给大家分享下. 源代码下载:Part1 Part2 Part3 我们在写WEB服 ...

  7. windows命令——taskmgr 1

    taskmgr.exe用于任务管理器.它显示系统中正在运行的进程. 该程序使用Ctrl+Alt+Del(一般是弹出Windows安全再点击“任务管理器”)或者Ctrl+Shift+Esc 有时候需要, ...

  8. Pyhton 利用threading远程下发文件和远程执行linux系统命令

    #!/usr/bin/env python # encoding: utf-8 #__author__ = 'cp' #__date__ = '21/07/16 上午 10:32' import th ...

  9. 简易版的TimSort排序算法

    欢迎探讨,如有错误敬请指正 如需转载,请注明出处http://www.cnblogs.com/nullzx/ 1. 简易版本TimSort排序算法原理与实现 TimSort排序算法是Python和Ja ...

  10. SQL Server 维护计划实现数据库备份(策略实战)

    一.背景 之前写过一篇关于备份的文章:SQL Server 维护计划实现数据库备份,上面文章使用完整备份和差异备份基本上能解决数据库备份的问题,但是为了保障数据更加安全,我们需要再次完善我们的备份计划 ...