[转帖]Druid介绍及入门
1.什么是Druid?
Druid是一个高效的数据查询系统,主要解决的是对于大量的基于时序的数据进行聚合查询。数据可以实时摄入,进入到Druid后立即可查,同时数据是几乎是不可变。通常是基于时序的事实事件,事实发生后进入Druid,外部系统就可以对该事实进行查询。
Druid采用的架构:
shared-nothing架构与lambda架构
Druid设计三个原则:
1.快速查询(Fast Query) : 部分数据聚合(Partial Aggregate) + 内存化(In-Memory) + 索引(Index)
2.水平拓展能力(Horizontal Scalability):分布式数据(Distributed data)+并行化查询(Parallelizable Query)
3.实时分析(Realtime Analytics):Immutable Past , Append-Only Future
2.Druid的技术特点
数据吞吐量大
支持流式数据摄入和实时
查询灵活且快速
3.Druid基本概念:
Druid在数据摄入之前,首先要定义一个数据源(DataSource,类似于数据库中表的概念)
Druid是一个分布式数据分析平台,也是一个时序数据库
1.数据格式
数据集合(时间列,维度列,指标列)
数据结构:
基于DataSource与Segment的数据结构,DataSource相当于关系型数据库中的表。
DataSource包含:
时间列(TimeStamp):标识每行数据的时间值
维度列(Dimension):标识数据行的各个类别信息
指标列(Metric):用于聚合和计算的列
Segment结构:
DataSource是逻辑结构,而Segment是数据实际存储的物理结构,Druid通过Segment实现对数据的横纵切割操作。
横向切割:通过设置在segmentGranularity参数,Druid将不同时间范围内的数据存储在不同Segment数据块中。
纵向切割:在Segment中面向列进行数据压缩处理
设置合理的Granularity
segmentGranularity:segment的组成粒度。
queryGranularity :segment的聚合粒度。
queryGranularity 小于等于 segmentGranularity
若segmentGranularity = day,那么Druid会按照天把不同天的数据存储在不同的Segment中。
若queryGranularity =none,可以查询所有粒度,queryGranularity = hour只能查询>=hour粒度的数据
2.数据摄入
实时数据摄入
批处理数据摄入
3.数据查询
原生查询,采用JSON格式,通过http传送
4.时序数据库
1.OpenTSDB
开源的时序数据库,支持数千亿的数据点,并提供精确的数据查询功能
采用java编写,通过基于Hbase的存储实现横向拓展
设计思路:利用Hbase的key存储一些tag信息,将同一小时的数据放在一行存储,提高了查询速度
架构示意图:
2.Pinot
接近Druid的系统
Pinot也采用了Lambda架构,将实时流和批处理数据分开处理
Realtime Node处理实时数据查询
Historical Node处理历史数据
技术特点:
面向列式存储的数据库,支持多种压缩技术
可插入的索引技术 — Sorted index ,Bitmap index, Inverted index
可以根据Query和Segment元数据进行查询和执行计划的优化
从kafka实时灌入数据和从hadoop的批量数据灌入
类似于SQL的查询语言和各种常用聚合
支持多值字段
水平拓展和容错
Pinot架构图:
3.Druid架构概览
Druid包含以下四个节点:
实时节点(Realtime ):即时摄入实时数据,以及生成Segment数据文件
实时节点负责消费实时数据,实时数据首先会被直接加载进实时节点内存中的堆结构缓存区,当条件满足时,
缓存区的数据会被冲写到硬盘上形成一个数据块(Segment Split),同时实时节点又会立即将新生成的数据库加载到内存的非堆区,
因此无论是堆结构缓存区还是非堆区里的数据都能被查询节点(Broker Node)查询
历史节点(Historical Node):加载已经生成好的文件,以供数据查询
查询节点(Broker Node):对外提供数据查询服务,并同时从实时节点和历史节点查询数据,合并后返回给调用方
协调节点(Coordinator Node):负责历史节点的数据负载均衡,以及通过规则(Rule)管理数据的生命周期
集群还依赖三类外部依赖
元数据库(Metastore):存储Druid集群的原数据信息,比如Segment的相关信息,一般用MySql或PostgreSQL
分布式协调服务(Coordination):为Druid集群提供一致性协调服务的组件,通常为Zookeeper
数据文件存储系统(DeepStorage):存放生成的Segment文件,并供历史节点下载。对于单节点集群可以是本地磁盘,而对于分布式集群一般是HDFS或NFS
实时节点数据块的生成示意图:
数据块的流向:
Realtime Node 实时节点:
1.通过Firehose来消费实时数据,Firehose是Druid中消费实时数据的模型
2.实时节点会通过一个用于生成Segment数据文件的模块Plumber(具体实现有RealtimePlumber等)按照指定的周期,按时将本周起生产的所有数据块合并成一个大的Segment文件
Historical Node历史节点
历史节点在启动的时候 :
1、会去检查自己本地缓存中已经存在的Segment数据文件
2、从DeepStorege中下载属于自己但是目前不在自己本地磁盘上的Segment数据文件
无论何种查询,历史节点会首先将相关Segment数据文件从磁盘加载到内存,然后在提供查询
Broker Node节点:
Druid提供两类介质作为Cache以供选择
外部Cache,比如Memcached
本地Cache,比如查询节点或历史节点的内存作为cache
高可用性:
通过Nginx来负载均衡查询节点(Broker Node)
协调节点:
协调节点(Coordinator Node)负责历史节点的数据负载均衡,以及通过规则管理数据的生命周期
4.索引服务
1.其中主节点:overlord
两种运行模式:
本地模式(Local Mode):默认模式,主节点负责集群的任务协调分配工作,也能够负责启动一些苦工(Peon)来完成一部分具体任务
远程模式(Remote):该模式下,主节点与从节点运行在不同的节点上,它仅负责集群的任务协调分配工作,不负责完成具体的任务,主节点提供RESTful的访问方法,因此客户端可以通过HTTP POST
请求向主节点提交任务。
命令格式如下:
http://<ioverlord_ip>:port/druid/indexer/v1/task
删除任务:http://<ioverlord_ip>:port/druid/indexer/v1/task/{taskId}/shutdown
控制台:http://<ioverlord_ip>:port/console.html
2.从节点:Middle Manager
索引服务的工作节点,负责接收主节点的分配的任务,然后启动相关的苦工即独立的JVM来完成具体的任务
这样的架构与Hadoop YARN相似
主节点相当于Yarn的ResourceManager,负责集群资源管理,与任务分配
从节点相当于Yarn的NodeManager,负责管理独立节点的资源并接受任务
Peon(苦工)相当于Yarn的Container,启动在具体节点上负责具体任务的执行
问题:
由于老版本的Druid使用pull方式消费kafka数据,使用kafka consumer group来共同消费一个kafka topic的数据,各个节点会负责独立消费一个或多个该topic所包含的Partition数据,并保证同一个Partition不会被多于一个的实时节点消费。每当一个实时节点完成部分数据的消费后,会主动将消费进度(kafka topic offset)提交到Zookeeper集群。
当节点不可用时,该kafka consumer group 会立即在组内对所有可用的节点进行partition重新分配,接着所有节点将会根据记录在zk集群中每一个partition的offset来继续消费未曾消费的数据,从而保证所有数据在任何时候都会被Druid集群至少消费一次。
这样虽然能保证不可用节点未消费的partition会被其余工作的节点消费掉,但是不可用节点上已经消费的数据,尚未被传送到DeepStoreage上且未被历史节点下载的Segment数据却会被集群遗漏,这是基于kafka-eight Firehose消费方式的一种缺陷。
解决方案:
1.让不可用节点恢复重新回到集群成为可用节点,重启后会将之前已经生成但未上传的Segment数据文件统统加载回来,并最终合并传送到DeepStoreage,保证数据完整性
2.使用Tranquility与Indexing Service,对kafka的数据进行精确的消费与备份。
由于Tranquility可以通过push的方式将指定数据推向Druid集群,因此它可以同时对同一个partition制造多个副本。所以当某个数据消费失败时候,系统依然可以准确的选择使用另外一个相同的任务所创建的Segment数据库
[转帖]Druid介绍及入门的更多相关文章
- .NET平台开源项目速览(6)FluentValidation验证组件介绍与入门(一)
在文章:这些.NET开源项目你知道吗?让.NET开源来得更加猛烈些吧!(第二辑)中,给大家初步介绍了一下FluentValidation验证组件.那里只是概述了一下,并没有对其使用和强大功能做深入研究 ...
- freemarker语法介绍及其入门教程实例
# freemarker语法介绍及其入门教程实例 # ## FreeMarker标签使用 #####一.FreeMarker模板文件主要有4个部分组成</br>#### 1.文本,直接输 ...
- (转)私有代码存放仓库 BitBucket介绍及入门操作
转自:http://blog.csdn.net/lhb_0531/article/details/8602139 私有代码存放仓库 BitBucket介绍及入门操作 分类: 研发管理2013-02-2 ...
- NET平台开源项目速览(6)FluentValidation验证组件介绍与入门(转载)
原文地址:http://www.cnblogs.com/asxinyu/p/dotnet_Opensource_project_FluentValidation_1.html 阅读目录 1.基本介绍 ...
- 读写Word的组件DocX介绍与入门
本文为转载内容: 文章原地址:http://www.cnblogs.com/asxinyu/archive/2013/02/22/2921861.html 开源Word读写组件DocX介绍与入门 阅读 ...
- Redis介绍及入门安装及使用
Redis介绍及入门安装及使用 什么是Redis Redis is an open source (BSD licensed), in-memory data structure store, use ...
- Mysql数据库的简单介绍与入门
Mysql数据库的简单介绍与入门 前言 一.下载与安装 1.下载 官网下载MYSQL5.7.21版本,链接地址https://www.mysql.com/downloads/.下载流程图如下: 找到M ...
- 实时OLAP分析利器Druid介绍
文章目录 前言 Druid介绍 主要特性 基础概念 数据格式 数据摄入 数据存储 数据查询 查询类型 架构 运维 OLAP方案对比 使用场景 使用建议 参考 近期主题 前言 项目早期.数据(报表分析) ...
- Druid 0.17 入门(2)—— 安装与部署
在Druid快速入门其实已经简单的介绍过最简化配置的单节点部署,本文我们将详细描述Druid的多种部署方式,对于测试开发环境可以选用轻量的单机部署方式,而生产环境我们最好选用集群部署的方式,确保系统的 ...
随机推荐
- 基于注解的SpringAOP源码解析(二)
在上篇文章 中我们搭建了一个阅读源码的demo工程,然后简单介绍了一下@EnableAspectJAutoProxy注解,这个注解最重要的功能就是为向Spring中注入了一个beanAnnotatio ...
- mysql 带外注入
带外通道 有时候注入发现并没有回显,也不能利用时间盲注,那么就可以利用带外通道,也就是利用其他协议或者渠道,如http请求.DNS解析.SMB服务等将数据带出. payload SELECT LOAD ...
- 英语CollaCoriiAsini阿胶CollaCoriiAsini单词
阿胶(colla Corii Asini)始载于<神农本草经>,是马科动物驴的皮去毛后熬制而成的胶块,其性味甘.平,具有滋阴润肺,补血.止血等功效.主要治疗血虚萎黄,眩晕心悸,肌痿无力,心 ...
- MySQL视图及索引
视图 视图就是一个表或多个表的查询结果,它是一张虚拟的表,因为它并不能存储数据. 视图的作用.优点: 限制对数据的访问 让复杂查询变得简单 提供数据的独立性 可以完成对相同数据的不同显示 //创建.修 ...
- Codeforces J. Soldier and Number Game(素数筛)
题目描述: Soldier and Number Game time limit per test 3 seconds memory limit per test 256 megabytes inpu ...
- IDEA+SpringBoot项目启动参数设置
SpringBoot属性加载顺序 顺序 形式 1 在命令行中传入的参数 2 SPRING_APPLICATION_JSON中的属性.SPRING_APPLICATION_JSON是以JSON的格式配置 ...
- 如何将MultipartFile转换成based4
public String test(MultipartFile file) throws Exception{ BASE64Encoder base64Encoder =new BASE64Enco ...
- wordpress列表页如果文章没有缩略图就显示默认图片
有时我们在设计wordpress模板时需要考虑是否有特色图,在分类页上如果一些文章有缩略图一些没有那就有点参差不齐不美观,有没办法设置如果没有文章缩略图则自动显示默认图呢?可以的,随ytkah一起来看 ...
- 解决tomcat出现乱码问题---韦大仙
1. 改这两个文件 URIEncoding="UTF-8" 2.然后重启idea
- 爬虫-selenium的使用
安装 pip install selenium 开始 # coding=utf-8 from selenium import webdriver # 引用selenium库 import time # ...