[LeetCode] 918. Maximum Sum Circular Subarray 环形子数组的最大和
Given a circular array C of integers represented by `A`, find the maximum possible sum of a non-empty subarray of C.
Here, a circular array means the end of the array connects to the beginning of the array. (Formally, C[i] = A[i]
when 0 <= i < A.length
, and C[i+A.length] = C[i]
when i >= 0
.)
Also, a subarray may only include each element of the fixed buffer A
at most once. (Formally, for a subarray C[i], C[i+1], ..., C[j]
, there does not exist i <= k1, k2 <= j
with k1 % A.length = k2 % A.length
.)
Example 1:
Input: [1,-2,3,-2]
Output: 3
Explanation: Subarray [3] has maximum sum 3
Example 2:
Input: [5,-3,5]
Output: 10 Explanation: Subarray [5,5] has maximum sum 5 + 5 = 10
Example 3:
Input: [3,-1,2,-1]
Output: 4
Explanation: Subarray [2,-1,3] has maximum sum 2 + (-1) + 3 = 4
Example 4:
Input: [3,-2,2,-3]
Output: 3 Explanation: Subarray [3] and [3,-2,2] both have maximum sum 3
Example 5:
Input: [-2,-3,-1]
Output: -1 Explanation: Subarray [-1] has maximum sum -1
Note:
-30000 <= A[i] <= 30000
1 <= A.length <= 30000
这道题让求环形子数组的最大和,对于环形数组,我们应该并不陌生,之前也做过类似的题目 [Circular Array Loop](http://www.cnblogs.com/grandyang/p/7658128.html),就是说遍历到末尾之后又能回到开头继续遍历。假如没有环形数组这一个条件,其实就跟之前那道 [Maximum Subarray](http://www.cnblogs.com/grandyang/p/4377150.html) 一样,解法比较直接易懂。这里加上了环形数组的条件,难度就增加了一些,需要用到一些 trick。既然是子数组,则意味着必须是相连的数字,而由于环形数组的存在,说明可以首尾相连,这样的话,最长子数组的范围可以有两种情况,一种是正常的,数组中的某一段子数组,另一种是分为两段的,即首尾相连的,可以参见 [大神 lee215 的帖子](https://leetcode.com/problems/maximum-sum-circular-subarray/discuss/178422/One-Pass) 中的示意图。对于第一种情况,其实就是之前那道题 [Maximum Subarray](http://www.cnblogs.com/grandyang/p/4377150.html) 的做法,对于第二种情况,需要转换一下思路,除去两段的部分,中间剩的那段子数组其实是和最小的子数组,只要用之前的方法求出子数组的最小和,用数组总数字和一减,同样可以得到最大和。两种情况的最大和都要计算出来,取二者之间的较大值才是真正的和最大的子数组。但是这里有个 corner case 需要注意一下,假如数组中全是负数,那么和最小的子数组就是原数组本身,则求出的差值是0,而第一种情况求出的和最大的子数组也应该是负数,那么二者一比较,返回0就不对了,所以这种特殊情况需要单独处理一下,参见代码如下:
class Solution {
public:
int maxSubarraySumCircular(vector<int>& A) {
int sum = 0, mn = INT_MAX, mx = INT_MIN, curMax = 0, curMin = 0;
for (int num : A) {
curMin = min(curMin + num, num);
mn = min(mn, curMin);
curMax = max(curMax + num, num);
mx = max(mx, curMax);
sum += num;
}
return (sum - mn == 0) ? mx : max(mx, sum - mn);
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/918
类似题目:
参考资料:
https://leetcode.com/problems/maximum-sum-circular-subarray/
https://leetcode.com/problems/maximum-sum-circular-subarray/discuss/178422/One-Pass
[LeetCode All in One 题目讲解汇总(持续更新中...)](https://www.cnblogs.com/grandyang/p/4606334.html)
[LeetCode] 918. Maximum Sum Circular Subarray 环形子数组的最大和的更多相关文章
- LC 918. Maximum Sum Circular Subarray
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...
- 918. Maximum Sum Circular Subarray
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...
- Leetcode Week5 Maximum Sum Circular Subarray
Question Given a circular array C of integers represented by A, find the maximum possible sum of a n ...
- [Swift]LeetCode918. 环形子数组的最大和 | Maximum Sum Circular Subarray
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...
- Maximum Sum Circular Subarray LT918
Given a circular array C of integers represented by A, find the maximum possible sum of a non-empty ...
- [LeetCode] 907. Sum of Subarray Minimums 子数组最小值之和
Given an array of integers A, find the sum of min(B), where B ranges over every (contiguous) subarra ...
- 动态规划-Maximum Subarray-Maximum Sum Circular Subarray
2020-02-18 20:57:58 一.Maximum Subarray 经典的动态规划问题. 问题描述: 问题求解: public int maxSubArray(int[] nums) { i ...
- [LeetCode] Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和
In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...
- [LeetCode] 689. Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和
In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...
随机推荐
- WinForm 窗体间传递数据
前言 做项目的时候,winfrom因为没有B/S的缓存机制,窗体间传递数据没有B/S页面传递数据那么方便,今天我们就说下winfrom中窗体传值的几种方式. 共有字段传递 共有字段传递实现起来很方便, ...
- HTML教程详解
HTML学习笔记 目录 一.html简介 1.html是什么? 2.html能做什么(html的作用)? 3.html书写规范 二.html基本标签 1.标签的语法 2.标签的分类 3.常用标签: 1 ...
- JMeter之Http协议接口性能测试--基础
一.不同角色眼中的接口 1.1,开发人员眼中的接口 1.2,测试人员眼中的接口 二.Http协议基本介绍 2.1,常见的接口协议 1.:2. :3. :4.:5.: 6. 2.2,Http协议栈 ...
- tkinter为多个窗口设置相同的icon报错
import threading import tkinter from PIL import Image, ImageTk def show_window(): window = tkinter.T ...
- 设计模式之设计原则 C#
成为一名资深架构师首先要懂设计模式,在懂之前,要清楚设计原则,原来我就吃过这个亏,很久以前有人问我设计原则,我是一头茫然,不是只有设计模式吗?且不知设计原则就像是写书法一样,楷体就是方正,竖道有垂露等 ...
- java--正则校验
java--正则校验 // boolearn matches(String regex):判断当前字符串是否匹配指定的正则表达式true/false demo: String qq = "1 ...
- apicloud开发app
1.apicloud官网 2.注册登录 3.开发控制台 4.创建应用 5.代码=>svn拉取代码,账号:注册账号的邮箱,密码:获取分支密码中的密码 6.编辑器下载对应的插件或者直接使用apicl ...
- Qt时间转换 当前时间
当前时间 qDebug() << QTime::currentTime().toString(Qt::ISODate); //"15:23:48" qDebug() & ...
- TP5 Request 请求对象【转】
app\index\controller\Index.php <?php namespace app\index\controller; use think\Request; class Ind ...
- iTerm2 + Oh My Zsh 打造舒适终端体验[mac os系统]
当使用Mac OS系统登陆服务器时,发现tab键不能提示系统默认的命令,于是参照各种网络文章,网友提供一种软件oh my zsh [网址:https://ohmyz.sh/] 其实最重要一个命令足矣 ...