公司GPU的机器版本本比较低,找了好多不同的镜像都不行,

自己从anaconda开始制作也没有搞定(因为公司机器不可以直接上网),

哎,官网只有使用最新的NVIDIA驱动,安装起来才顺利。

最后,找到一个暂时可用的镜像:

https://linux.ctolib.com/anibali-docker-pytorch.html

其间遇到两个问题:

1, 安装全没出错,但torch.cuda.is_available()为False,这表示torch还是不能使用GPU。

2,在跑例程时,显示RuntimeError: CUDA error: out of memory,这表示运行的时候使用CUDA_VISIBLE_DEVICES限制一下使用的GPU。

PyTorch Docker image

Ubuntu + PyTorch + CUDA (optional)

Requirements

In order to use this image you must have Docker Engine installed. Instructions for setting up Docker Engine are available on the Docker website.

CUDA requirements

If you have a CUDA-compatible NVIDIA graphics card, you can use a CUDA-enabled version of the PyTorch image to enable hardware acceleration. I have only tested this in Ubuntu Linux.

Firstly, ensure that you install the appropriate NVIDIA drivers and libraries. If you are running Ubuntu, you can install proprietary NVIDIA drivers from the PPA and CUDA from the NVIDIA website.

You will also need to install nvidia-docker2 to enable GPU device access within Docker containers. This can be found at NVIDIA/nvidia-docker.

Prebuilt images

Pre-built images are available on Docker Hub under the name anibali/pytorch. For example, you can pull the CUDA 10.0 version with:

$ docker pull anibali/pytorch:cuda-10.0

The table below lists software versions for each of the currently supported Docker image tags available for anibali/pytorch.

Image tag CUDA PyTorch
no-cuda None 1.0.0
cuda-10.0 10.0 1.0.0
cuda-9.0 9.0 1.0.0
cuda-8.0 8.0 1.0.0

The following images are also available, but are deprecated.

Image tag CUDA PyTorch
cuda-9.2 9.2 0.4.1
cuda-9.1 9.1 0.4.0
cuda-7.5 7.5 0.3.0

Usage

Running PyTorch scripts

It is possible to run PyTorch programs inside a container using the python3 command. For example, if you are within a directory containing some PyTorch project with entrypoint main.py, you could run it with the following command:

docker run --rm -it --init \
  --runtime=nvidia \
  --ipc=host \
  --user="$(id -u):$(id -g)" \
  --volume="$PWD:/app" \
  -e NVIDIA_VISIBLE_DEVICES=0 \
  anibali/pytorch python3 main.py

Here's a description of the Docker command-line options shown above:

  • --runtime=nvidia: Required if using CUDA, optional otherwise. Passes the graphics card from the host to the container.
  • --ipc=host: Required if using multiprocessing, as explained at https://github.com/pytorch/pytorch#docker-image.
  • --user="$(id -u):$(id -g)": Sets the user inside the container to match your user and group ID. Optional, but is useful for writing files with correct ownership.
  • --volume="$PWD:/app": Mounts the current working directory into the container. The default working directory inside the container is /app. Optional.
  • -e NVIDIA_VISIBLE_DEVICES=0: Sets an environment variable to restrict which graphics cards are seen by programs running inside the container. Set to all to enable all cards. Optional, defaults to all.

You may wish to consider using Docker Compose to make running containers with many options easier. At the time of writing, only version 2.3 of Docker Compose configuration files supports the runtimeoption.

Running graphical applications

If you are running on a Linux host, you can get code running inside the Docker container to display graphics using the host X server (this allows you to use OpenCV's imshow, for example). Here we describe a quick-and-dirty (but INSECURE) way of doing this. For a more comprehensive guide on GUIs and Docker check out http://wiki.ros.org/docker/Tutorials/GUI.

On the host run:

sudo xhost +local:root

You can revoke these access permissions later with sudo xhost -local:root. Now when you run a container make sure you add the options -e "DISPLAY" and --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw". This will provide the container with your X11 socket for communication and your display ID. Here's an example:

docker run --rm -it --init \
  --runtime=nvidia \
  -e "DISPLAY" --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw" \
  anibali/pytorch python3 -c "import tkinter; tkinter.Tk().mainloop()"

十倍的时间差距:

伤透了心的pytorch的cuda容器版的更多相关文章

  1. 安装graphlab伤透了心,终于搞定了

    为了方便研究各种机器学习算法,我想用graphlab来辅助我对后续算法的研究.所以我的目标就是安装graphlab到我的windows笔记本中.而基于python的graphlab的安装最好是采用如下 ...

  2. pytorch查看CUDA支持情况,只需要三行代码,另附Cuda runtime error (48) : no kernel image is available for execution处理办法

    import torch import torchvision print(torch.cuda.is_available()) 上面的命令只是检测CUDA是否安装正确并能被Pytorch检测到,并没 ...

  3. ubuntu 18.04安装pytorch、cuda、cudnn等

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com ubuntu 16.04用了1年多了,18.04版已经发布也半年了,与时俱进,重装Linux系统,这里 ...

  4. pytorch中CUDA类型的转换

    import torch import numpy as np device = torch.device("cuda:0" if torch.cuda.is_available( ...

  5. pytorch 中序列化容器nn.Sequential

    按下图顺序搭建以及执行

  6. '"千"第一周学习情况记录

    一周过去了,今天将我这一周的学习内容和主要感想记录与此和大家共同分享,一起进步.我将自己的学习计划命名为"千",因为我喜欢这个字,希望能用此来鼓舞自己不断前进.时间总是很快的,这一 ...

  7. 可视化工具solo show-----Prefuse自带例子GraphView讲解

    2014.10.15日以来的一个月,挤破了头.跑断了腿.伤透了心.吃够了全国最大餐饮连锁店——沙县小吃.其中酸甜苦辣,绝不是三言两语能够说得清道的明的.校招的兄弟姐妹们,你们懂得…… 体会最深的一句话 ...

  8. 一文读懂UGC:互联网上的生态秘密

    转载自近乎: UGC(User- Generated Content)用户原创生产内容,它是相对于PGC(Professionally-produced Content)专业生产内容的一种内容来源,简 ...

  9. 【未完成0.0】Noip2012提高组day2 解题报告

    第一次写一套题的解题报告,感觉会比较长.(更新中Loading....):) 题目: 第一题:同余方程 描述 求关于x的同余方程ax ≡ 1 (mod b)的最小正整数解. 格式 输入格式 输入只有一 ...

随机推荐

  1. Prometheus监控实战day1-监控简介

    福利 Prometheus监控实战PDF电子书下载 链接:https://pan.baidu.com/s/1QH4Kvha5g70OhYQdp4YsfQ 提取码:oou5 若你喜欢该资料,请购买该资料 ...

  2. es查询和更新 语句示例

    文档目录: https://www.elastic.co/guide/index.html GET _search { "query": { "match_all&quo ...

  3. vs2015下C4819该文件包含不能在当前代码页(936)中表示的字符问题解决

    今天编译IfcOpenshell出现很多warning如下: C4819 该文件包含不能在当前代码页(936)中表示的字符.请将该文件保存为 Unicode 格式以防止数据丢失 解决方案: 文件——& ...

  4. c# – Asp.Net Core MVC中Request.IsAjaxRequest()在哪里?

    要了解有关新的令人兴奋的Asp.Net-5框架的更多信息,我正在使用最新发布的Visual Studio 2015 CTP-6来构建一个Web应用程序. 大多数事情看起来真的很有希望,但我似乎找不到R ...

  5. Ubuntu16.04 安装PHP7 的 imagick 扩展

    转自:https://blog.csdn.net/qq_16885135/article/details/78130281 1.从 https://pecl.php.net/package/imagi ...

  6. c++11多线程记录1 -- std::thread

    启动一个线程 话不多说,直接上代码 void func(); int main() { std::thread t(func); //这里就开始启动线程了 t.join(); // 必须调用join或 ...

  7. LeetCode 5214. 最长定差子序列(Java)HashMap

    题目: 5214. 最长定差子序列 给你一个整数数组 arr 和一个整数 difference,请你找出 arr 中所有相邻元素之间的差等于给定 difference 的等差子序列,并返回其中最长的等 ...

  8. nginx通过自定义header属性来转发不同的服务

    一.背景 因为需要上线灰度发布,只要nginx接收到头部为: wx_unionid: 就会跳转到另外一个url,比如: 通过配置nginx 匹配请求头wx_unionid 来转发到灰度环境.核心:客户 ...

  9. 打印从1到n位数的最大值

    题目: 输入数字n,按顺序打印从1到最大的n位十进制数,如输入3,则打印从1.2.3一直到最大的3位数999 参考大数运算的方法.考虑到位数会很大,所以采用字符串的形式解决.对输入的n,创建一个长度为 ...

  10. SpringBoot使用mybatis,发生:Failed to configure a DataSource: 'url' attribute is not specified and no embedded datasource could be configured

    最近,配置项目,使用SpringBoot2.2.1,配置mybatis访问db,配好后,使用自定义的数据源.启动发生: APPLICATION FAILED TO START ************ ...