线性回归, 这部分算是我最为擅长的了, 真的不吹, 6年经验, 我高中时代就已经会推导了, 当然是最最小二乘法和统计学(假设检验, 参数分布等)的角度.

后来上了大学, 又是从最小二乘和统计学角度, 最终呢, 还是从线性代数(向量投影) 和 微积分 角度 + 代码实现给整了一遍, 再后来就是ML, 撸了一遍梯度下降, 嗯, 整体感悟就是,对一个事物的认知, 需要一个时间的过程和实践.

正如古人所讲, 纸上来得终觉浅, 绝知此事要躬行.

回归模型

数据:

\((y_i, X_{i1}, X_{i2}...X_{ip}), \ i = 1,2,3...n\)

y 是一个向量, X是一个矩阵

样本 X 是一个 nxp 的矩阵, 每一行是表示一个样本, 对应一个目标值

y 是由这 p 个(维) 列向量 线性组合 而成, 因此叫线性回归.

模型:

\(y_i = \beta_0 +\beta_1 X_{i1} + \beta_2 X_{i2} + \beta_p X_{il} + \epsilon_i, \ i=1,2,...n\)

\(\epsilon \backsim N(0, \sigma)\) , 为啥误差的均值是0, 参考大数定律呗.(总体和样本的关系)

写为矩阵的形式:

\(y = X\beta + \epsilon\)

X 是 nxp, \(\beta\) 是 px1, y 是 nx1

误差函数:

\(J(\beta) = ||X\beta - y||^2\)

\(X\beta - y\) 表示两个列向量相减, 表示两个向量 相似, 如果相似, 则对应的分量应该接近0, 这样得到的差向量, 对其求模, 就可衡量了.

当然, 之前在SVM 衡量相似 用的是 内积, 方法很多啦, 可解释就好.

最线性代数(投影)求解 \(\beta\)

涉及的现代知识有些多,不过这是必须的, 当你认识到本质的时候, 你会发现, 原来世界如此美妙.

这是为方便说明投影概念,我在2017年画的几张图.







\(\beta = (X^TX)^{-1}X^Ty\)

从向量投影角度: 参考MIT <线性代数> 最小二乘

\(y = X\beta\) 无解, 做一个变换, 等号两边左乘 \(X^T\) 求近似解(空间投影找近似)

\(X^Ty = X^TX\beta\)

$即: \beta = (XTX){-1}X^Ty $

感觉这是一个历史问题, 最小二乘在17-18世纪是非常火的, 但也是受到很多怀疑, 于是高斯这批人,就从概率的角度, 再对最小二乘法进行了一个推广, 也就差不多时大二的概率论书中的那个样子, 用似然来整的.

从微分(梯度)角度求解 \(\beta\)

\(J(\beta) = ||X\beta -y||^2\)

$ = (X\beta -y)^T (X\beta -y)$

\(= (\beta^T X^T -y^T) (X\beta -y)\)

\(=\beta^T X^T X \beta - \beta^T X^Ty - y^TX \beta + y^Ty\)

然后对 beta 求 偏导 = 0 即可

矩阵求导: http://www2.imm.dtu.dk/pubdb/views/publication_details.php?id=3274

矩阵求导讲起来有点复杂, 我目前都是记住了一些常用的形式的, 哈哈, CV 调参侠 一枚

\(\nabla_\beta J(\beta) = 0 = 2X^TX \beta - X^Ty - X^Ty\)

\(即X^TX\beta = X^Ty\)

$即: \beta = (XTX){-1}X^Ty $

矩阵来写确实很优美简洁, 但有些抽象,尤其是求导, 这样还有啥好处呢? 当然是非常容易写代码了呀

人们来理解矩阵是非常困难的 - 涉及很多思想和求解

but

计算机理解矩阵是非常容易的 - 就是多维数组而已啦

只需一行代码求解 参数 beta

def 求解线性回归_beta(A, b):
"""return 值 = (

ML- 线性回归推导的更多相关文章

  1. ML 线性回归Linear Regression

    线性回归 Linear Regression MOOC机器学习课程学习笔记 1 单变量线性回归Linear Regression with One Variable 1.1 模型表达Model Rep ...

  2. 线性回归和梯度下降代码demo

    程序所用文件:https://files.cnblogs.com/files/henuliulei/%E5%9B%9E%E5%BD%92%E5%88%86%E7%B1%BB%E6%95%B0%E6%8 ...

  3. programming-languages学习笔记--第4部分

    programming-languages学习笔记–第4部分 */--> pre.src {background-color: #292b2e; color: #b2b2b2;} program ...

  4. ML(3)——线性回归

    在统计学中,线性回归(Linear Regression)是利用称为线性回归方程的最小平方函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性 ...

  5. 机器学习 —— 基础整理(五)线性回归;二项Logistic回归;Softmax回归及其梯度推导;广义线性模型

    本文简单整理了以下内容: (一)线性回归 (二)二分类:二项Logistic回归 (三)多分类:Softmax回归 (四)广义线性模型 闲话:二项Logistic回归是我去年入门机器学习时学的第一个模 ...

  6. 大叔学ML第四:线性回归正则化

    目录 基本形式 梯度下降法中应用正则化项 正规方程中应用正则化项 小试牛刀 调用类库 扩展 正则:正则是一个汉语词汇,拼音为zhèng zé,基本意思是正其礼仪法则:正规:常规:正宗等.出自<楚 ...

  7. 大叔学ML第二:线性回归

    目录 基本形式 求解参数\(\vec\theta\) 梯度下降法 正规方程导法 调用函数库 基本形式 线性回归非常直观简洁,是一种常用的回归模型,大叔总结如下: 设有样本\(X\)形如: \[\beg ...

  8. ML之多元线性回归

    转自:http://www.cnblogs.com/zgw21cn/archive/2009/01/07/1361287.html 1.多元线性回归模型 假定被解释变量与多个解释变量之间具有线性关系, ...

  9. ml的线性回归应用(python语言)

    线性回归的模型是:y=theta0*x+theta1   其中theta0,theta1是我们希望得到的系数和截距. 下面是代码实例: 1. 用自定义数据来看看格式: # -*- coding:utf ...

  10. 线性回归(Linear Regression)均方误差损失函数最小化时关于参数theta的解析解的推导(手写)

    第一页纸定义了损失函数的样子, theta, X 和 y 的 shape, 以及最终的损失函数向量表现形式. 第二页纸抄上了几个要用到的矩阵求导公式,以及推导过程和结果. 要说明的是:推导结果与the ...

随机推荐

  1. python yield实现协程(生产者-消费者)

    def customer(): r="" while True: n=yield r#,接收生产者的消息,并向消费者发送r print("customer receive ...

  2. iptables 自定义链

    当默认链中的规则非常多时,不方便我们管理. 想象一下,如果INPUT链中存放了200条规则,这200条规则有针对httpd服务的,有针对sshd服务的,有针对私网IP的,有针对公网IP的,假如,我们突 ...

  3. spring boot2X整合Consul一使用RestTemplate实现服务调用

    Consul可以用于实现分布式系统的服务发现与配置 服务调用有两种方式: A.使用RestTemplate 进行服务调用 负载均衡——通过Ribbon注解RestTemplate B.使用Feign ...

  4. Maven 教程(9)— Maven坐标详解

    原文地址:https://blog.csdn.net/liupeifeng3514/article/details/79544532 Maven的一个核心的作用就是管理项目的依赖,引入我们所需的各种j ...

  5. Python【每日一问】29

    问: [基础题]:给一个不多于 5 位的正整数,要求:一.求它是几位数,二.逆序印出各位数字[提高题]:某个公司采用公用电话传递数据,数据是四位的整数,在传递过程中是加密的,加密规则如下:每位数字都加 ...

  6. Springboot Actuator之十:actuator中的audit包

    前言这篇文章我们来分析一下org.springframework.boot.actuate.security,org.springframework.boot.actuate.audit中的代码,这2 ...

  7. Mysql 数据库 表中列的操作

    [1]Mysql数据库中表的列操作 Mysql中关于表中列的操作集语句: -- [1]增加一列 ) DEFAULT NULL COMMENT '目的码区号'; -- [2]增加一列,在dnis_are ...

  8. 【SCALA】2、驼峰,下划线互转

    1.刚开始写scala,发现确实还是很不熟悉,api以及语法的使用都不是很简洁,这写出来跟java也没差多少... 献丑了 package spark /** * @ProjectName: cutt ...

  9. C#怎么判断字符是不是汉字 汉字和Unicode编码互相转换

    判断一个字符是不是汉字通常有三种方法,第1种用 ASCII 码判断(在 ASCII码表中,英文的范围是0-127,而汉字则是大于127,根据这个范围可以判断),第2种用汉字的 UNICODE 编码范围 ...

  10. 【在 Nervos CKB 上做开发】Nervos CKB 脚本编程简介[5]:调试 debug

    作者:Xuejie 原文链接:https://xuejie.space/2019_10_18_introduction_to_ckb_script_programming_debugging/ Ner ...