PAT_A1018#Public Bike Management
Source:
Description:
There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.
The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.
When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.
The above figure illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3, we have 2 different shortest paths:
- PBMC -> S1 -> S3. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3, so that both stations will be in perfect conditions.
- PBMC -> S2 -> S3. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.
Input Specification:
Each input file contains one test case. For each case, the first line contains 4 numbers: Cmax (≤), always an even number, is the maximum capacity of each station; N (≤), the total number of stations; Sp, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers Ci (,) where each Ci is the current number of bikes at Si respectively. Then Mlines follow, each contains 3 numbers: Si, Sj, and Tij which describe the time Tij taken to move betwen stations Si and Sj. All the numbers in a line are separated by a space.
Output Specification:
For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of Spis adjusted to perfect.
Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge's data guarantee that such a path is unique.
Sample Input:
10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1
Sample Output:
3 0->2->3 0
Keys:
Code:
/*
Data: 2019-04-20 19:10:26
Problem: PAT_A1018#Public Bike Management
AC: 34:36 题目大意:
站点最佳状态时,有一半的自行车;
从起点选择最短路径终点,路径上的其他站点同样调整至最佳状态(补充/回收);
多条最短路径时,选择需要携带且回收数量最少的最条路径
输入:
第一行给出,最大容量Cmax,结点数N,Sp终点(默认起点为0),路径数M
第二行给出,各站点现有库存Ci
输出;
携带车辆数,路径,回收车辆数
*/ #include<cstdio>
#include<vector>
#include<algorithm>
using namespace std;
const int M=,INF=1e9;
int grap[M][M],vis[M],d[M],c[M];
int n,m,Cmax,st=,dt,optSent=INF,optBring=INF;
vector<int> temp,opt,pre[M]; void Dijskra(int s)
{
fill(vis,vis+M,);
fill(d,d+M,INF);
d[s]=;
for(int i=; i<=n; i++)
{
int u=-,Min=INF;
for(int j=; j<=n; j++)
{
if(vis[j]== && d[j]<Min)
{
u=j;
Min=d[j];
}
}
if(u==-) return;
vis[u]=;
for(int v=; v<=n; v++)
{
if(vis[v]== && grap[u][v]!=INF)
{
if(d[u]+grap[u][v] < d[v])
{
d[v]=d[u]+grap[u][v];
pre[v].clear();
pre[v].push_back(u);
}
else if(d[u]+grap[u][v]==d[v])
pre[v].push_back(u);
}
}
}
} void DFS(int v)
{
if(v == st)
{
int sent=,bring=;
for(int i=temp.size()-; i>=; i--)
{
int v = temp[i];
if(bring+(c[v]-Cmax/) > )
bring = bring + (c[v]-Cmax/);
else
{
sent += (Cmax/-bring-c[v]);
bring=;
}
}
if(sent < optSent)
{
optSent = sent;
optBring = bring;
opt = temp;
}
else if(sent==optSent && bring<optBring)
{
optBring = bring;
opt = temp;
}
return;
} temp.push_back(v);
for(int i=; i<pre[v].size(); i++)
DFS(pre[v][i]);
temp.pop_back();
} int main()
{
#ifdef ONLINE_JUDGE
#else
freopen("Test.txt", "r", stdin);
#endif // ONLINE_JUDGE fill(grap[],grap[]+M*M,INF);
scanf("%d%d%d%d", &Cmax,&n,&dt,&m);
for(int i=; i<=n; i++)
scanf("%d", &c[i]);
for(int i=; i<m; i++)
{
int v1,v2;
scanf("%d%d",&v1,&v2);
scanf("%d", &grap[v1][v2]);
grap[v2][v1]=grap[v1][v2];
}
Dijskra(st);
DFS(dt);
printf("%d %d", optSent,st);
for(int i=opt.size()-; i>=; i--)
printf("->%d", opt[i]);
printf(" %d", optBring); return ;
}
PAT_A1018#Public Bike Management的更多相关文章
- 1018. Public Bike Management (30)
时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue There is a public bike service i ...
- PAT 1018. Public Bike Management
There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...
- A1018. Public Bike Management
There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...
- 1018 Public Bike Management
There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...
- PAT A1018 Public Bike Management (30 分)——最小路径,溯源,二标尺,DFS
There is a public bike service in Hangzhou City which provides great convenience to the tourists fro ...
- PAT 1018 Public Bike Management[难]
链接:https://www.nowcoder.com/questionTerminal/4b20ed271e864f06ab77a984e71c090f来源:牛客网PAT 1018 Public ...
- PTA (Advanced Level) 1018 Public Bike Management
Public Bike Management There is a public bike service in Hangzhou City which provides great convenie ...
- PAT甲级1018. Public Bike Management
PAT甲级1018. Public Bike Management 题意: 杭州市有公共自行车服务,为世界各地的游客提供了极大的便利.人们可以在任何一个车站租一辆自行车,并将其送回城市的任何其他车站. ...
- PAT 1018 Public Bike Management(Dijkstra 最短路)
1018. Public Bike Management (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yu ...
随机推荐
- Android系统编译时遇到的几个.mk的疑惑。
在Android4.2的源代码Build/prduct_config.mk里面遇到几个疑惑: # Convert a short name like "sooner" into t ...
- java集合: List、Set、Map总结 + HashMap/Hashtable 差别
List:(有序,能够反复)通过下标索引 ----ArrayList 可变数组,随机查找 ----LinkedList 链表,不论什么位置插入删除快 ----Vecto ...
- 乐视云监控数据存放到influxdb中
3.9 监控.告警系统 监控报警我们分PaaS平台和业务应用两大类. PaaS平台主要聚焦在基础设施和LeEngine的各个服务组件的监控报警(比如主机CPU,内存,IO,磁盘空间,LeEng ...
- AngularJS 1.x 国际化——Angular-translate例子
可运行代码如下: <!DOCTYPE html> <html ng-app="MyApp"> <head> <meta http-equi ...
- JSP-Runoob:JSP 链接数据库
ylbtech-JSP-Runoob:JSP 链接数据库 1.返回顶部 1. JSP 连接数据库 本教程假定您已经了解了 JDBC 应用程序的工作方式.在您开始学习 JSP 数据库访问之前,请访问 J ...
- 【WIP】客户端JavaScript DOM
创建: 2017/10/12 初步完成: 2017/10/15 更新: 2017/10/14 标题加上[WIP],继续完成 [TODO] 补充暂略的, 搜[略] DOM树 概要 基本 ...
- 解决input输入框在iOS中有阴影问题
input{ -webkit-appearance: none; }
- 解决macOS升级之后每次使用ssh都要输入密码的问题
最近想趁着假期把跟了我2年mac的系统重做下.于是就开始行动了,经过大半天的数据备份.然后进行了全盘格式化,使用了在线更新的方式从新安装升级到了10.12.6.这里提醒下有类似的想法的同学可以采用 ...
- 跨服务器进行SQL Server数据库的数据处理
exec sp_addlinkedserver 'ITDB', ' ', 'SQLOLEDB', '服务器IP' exec sp_addlinkedsrvlogin 'ITDB', 'false ', ...
- JVM中线程状态转换图
JVM中线程的状态转换图 线程在一定条件下,状态会发生变化.线程一共有以下几种状态: 1.新建状态(New):新创建了一个线程对象. 2.就绪状态(Runnable):线程对象创建后,其他线程调用了该 ...