如何理解pca和svd的关系?
主成分分析和奇异值分解进行降维有何共同点?
矩阵的奇异值分解
当矩阵不是方阵,无法为其定义特征值与特征向量,可以用一个相似的概念来代替:奇异值。
通常用一种叫奇异值分解的算法来求取任意矩阵的奇异值:

抽象的概念要用具体的方式理解,来看几张图:

上图中的红色区域是一个以原点为中心的单位圆。圆当中的任意一点可以用向量 x 标示,且 x 满足:

给定一个 2×2 的方阵:

利用 MATLAB 对 A 做奇异值分解:

即:

所以:

先看 V' 对 x 做了什么:

V' 使 x 旋转了一个角度。
再看 SV' 对 x 做了什么:

S 在 V'x 的基础上,在两个主方向进行了伸缩变换。
最后看 USV' 对 x 做了什么:

U 在 SV'x 的基础上,进行了旋转变换。
至此,奇异值分解的几何意义可谓一目了然:
A 是一个线性变换,把 A 分解成 USV',S 给出了变换后椭圆长短轴的长度, U 和 V' 一起确定了变换后的方向,所以 U、S、V' 包含了这个线性变换的全部信息。S 矩阵的对角线元素称为 A 的奇异值,与特征值一样,大的奇异值对应长轴,小的奇异值对应短轴,大的奇异值包含更多信息。
当矩阵是对称方阵时,其特征值与奇异值相等。
网上有一个很经典的案例来说明 SVD 的应用:
有一张 25×15 的图片:

把它用矩阵表示:

这个矩阵的秩等于 3。即矩阵只有 3 种线性无关的列,其他的列都是冗余的:

对 M 做奇异值分解,得到 3 个不为零的奇异值:

它们分别对应着 3 个线性无关的列。
另一种更一般的情况,处理一张有噪声的图片

它的奇异值为:

可以想象在15维空间中有一个超椭球体,它有15个轴,其中有3个轴是主要的轴(对应着3个最大的奇异值),有这3个轴就可以大致勾勒出超椭球体的形状,因为它们包含了大部分信息。
如果 S 中的对角线元素从大到小排列,我们就只保留 S 左上角的 3×3 的子矩阵,并相应保留 U 和 V 的前 3 列,简化后的 U、S、V 依然保留了 M 的大部分信息:

主成分分析
案例1
假如有 m 条1维数据,由于混入了噪音,变成了2维。

在坐标系中把他们绘制出来:

主成分分析(PCA)可以用来排除这些噪音,把原来的维度提取出来。
首先将数据归一化,并将其所包含的信息用 协方差矩阵(协方差矩阵表示不同维度之间的相关关系,这是一个对称矩阵)来表示:

Σ 有2个奇异值,例如:

显然前者包含了大部分信息,对应的矩阵 U 的第一列就是主成分的方向:

于是就通过降维对数据实现了去噪。
在更一般的情况下,假设有 m 条 n 维的数据,对协方差矩阵进行奇异值分解得到 n 个从大到小排列的奇异值:

如果希望信息利用率在99%以上,可利用如下不等式来确定主成分的维度 p:

参见以下链接文章.
https://my.oschina.net/findbill/blog/535044
如何理解pca和svd的关系?的更多相关文章
- 浅谈 PCA与SVD
前言 在用数据对模型进行训练时,通常会遇到维度过高,也就是数据的特征太多的问题,有时特征之间还存在一定的相关性,这时如果还使用原数据训练模型,模型的精度会大大下降,因此要降低数据的维度,同时新数据的特 ...
- 降维方法PCA与SVD的联系与区别
在遇到维度灾难的时候,作为数据处理者们最先想到的降维方法一定是SVD(奇异值分解)和PCA(主成分分析). 两者的原理在各种算法和机器学习的书籍中都有介绍,两者之间也有着某种千丝万缕的联系.本文在简单 ...
- PCA和SVD(转)
最近突然看到一个问题,PCA和SVD有什么关系?隐约记得自己照猫画虎实现的时候PCA的时候明明用到了SVD啊,但SVD(奇异值分解)和PCA的(特征值分解)貌似差得相当远,由此钻下去搜集了一些资料,把 ...
- 机器学习实战基础(二十三):sklearn中的降维算法PCA和SVD(四) PCA与SVD 之 PCA中的SVD
PCA中的SVD 1 PCA中的SVD哪里来? 细心的小伙伴可能注意到了,svd_solver是奇异值分解器的意思,为什么PCA算法下面会有有关奇异值分解的参数?不是两种算法么?我们之前曾经提到过,P ...
- What is an intuitive explanation of the relation between PCA and SVD?
What is an intuitive explanation of the relation between PCA and SVD? 36 FOLLOWERS Last asked: 30 Se ...
- 数据预处理:PCA,SVD,whitening,normalization
数据预处理是为了让算法有更好的表现,whitening.PCA.SVD都是预处理的方式: whitening的目标是让特征向量中的特征之间不相关,PCA的目标是降低特征向量的维度,SVD的目标是提高稀 ...
- 机器学习实战基础(二十一):sklearn中的降维算法PCA和SVD(二) PCA与SVD 之 降维究竟是怎样实现
简述 在降维过程中,我们会减少特征的数量,这意味着删除数据,数据量变少则表示模型可以获取的信息会变少,模型的表现可能会因此受影响.同时,在高维数据中,必然有一些特征是不带有有效的信息的(比如噪音),或 ...
- PCA和SVD最佳理解
奇异值分解(SVD)原理与在降维中的应用 https://www.cnblogs.com/pinard/p/6251584.html 最通俗易懂的PCA主成分分析推导 https://blog.csd ...
- Machine Learning in Action – PCA和SVD
降维技术, 首先举的例子觉得很好,因为不知不觉中天天都在做着降维的工作 对于显示器显示一个图片是通过像素点0,1,比如对于分辨率1024×768的显示器,就需要1024×768个像素点的0,1来表示, ...
随机推荐
- iOS-MVC设计模式不足
View 的最大的任务就是向 Controller 传递用户动作事件. ViewController 不再承担一切代理和数据源的职责,通常只负责一些分发和取消网络请求以及一些其他的任务. 1.1 苹果 ...
- vim第五章 命令行模式
vim第五章命令行模式 技巧 27 结识vim的命令行模式 在命令行模式中执行的命令有被称作ex命令 在按/调出查找提示符或者<C-r>=访问表示寄存器时 命令行模式也被激活 ...
- php删除
<?php$id = $_GET['id'];$db= new Mysqli("localhost","root","root",&q ...
- hdu2051
二进制转换 #include <stdio.h> void change(int n){ ]; ; while(n){ num[cnt]=n%; n/=; cnt++; } cnt--; ...
- HDU-1251 统计难题,字典树或者map!
统计难题 很久就看过这个题了,但不会~~~不会~~ 题意:给出一张单词表,然后下面有若干查询,每次给出一个单词,问单词表中是否存在以这个单词为前缀的单词,输出数量.本身也是自身的前缀.只有一组数据! ...
- Luogu【P2904】跨河(DP)
题目链接在这里 此题DP.用一个前缀和一样的东西,把载i个奶牛的时间求出来,然后DP代码如下: ;i<=n;++i){ f[i]=que[i]; ;j<i;++j) f[i]=min(f[ ...
- P1857 质数取石子 (DP,递推)
题目描述 桌上有若干个石子,每次可以取质数个.谁先取不了,谁就输.问最少几步能赢?(一个人取一次算一步) 输入输出格式 输入格式: 第一行N,表示有N组数据 接下来N行为石子数 输出格式: 每组数据一 ...
- Linux(7):用户管理
用户管理 让一个脚本或命令开机自启动的方法: # 方法一: 把脚本放到 /etc/rc.local 中 # 方法二: 把脚本或命令通过 chkconfig 管理 # 如何让一个脚本被 chkconfi ...
- N皇后-位运算优化
N皇后问题 时间限制: 5 Sec 内存限制: 128 MB 题目描述 魔法世界历史上曾经出现过一个伟大的罗马共和时期,出于权力平衡的目的,当时的政治理论家波利比奥斯指出:“事涉每个人的权利,绝不应 ...
- 洛谷 [P2594] 染色游戏
博弈论+SG函数的应用 这是一个二维翻硬币问题 一维翻硬币问题有一个结论: 局面的SG值等于局面中所有反面朝上的硬币单独存在时的SG值的异或和 这个结论同样适用于二维的翻硬币问题 证明可以用数学归纳法 ...