D. Mashmokh and ACM

Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university and participate in ACM instead of finding a new job. He wants to become a member of Bamokh's team. In order to join he was given some programming tasks and one week to solve them. Mashmokh is not a very experienced programmer. Actually he is not a programmer at all. So he wasn't able to solve them. That's why he asked you to help him with these tasks. One of these tasks is the following.

A sequence of l integers b1, b2, ..., bl (1 ≤ b1 ≤ b2 ≤ ... ≤ bl ≤ n) is called good if each number divides (without a remainder) by the next number in the sequence. More formally  for all i (1 ≤ i ≤ l - 1).

Given n and k find the number of good sequences of length k. As the answer can be rather large print it modulo 1000000007 (109 + 7).

Input

The first line of input contains two space-separated integers n, k (1 ≤ n, k ≤ 2000).

Output

Output a single integer — the number of good sequences of length k modulo 1000000007 (109 + 7).

Sample test(s)
input
3 2
output
5
input
6 4
output
39
input
2 1
output
2

题意:给出一组数列,问满足数列递增且前一个元素能整除后一个元素的数列一共有多少种。

sl:赤裸裸的dp,比赛时叫C整的快没时间了,十分钟敲了下交了一发wa了原来忘记mod1e9了。

dp方程:  dp[i][j]+=dp[i-1][k]  (j%k==0) 只要预处理因子就可以了。

 1 #include<cstdio>
 2 #include<cstring>
 3 #include<algorithm>
 4 #include<vector>
 5 using namespace std;
 6 const int MAX = +;
 7 const int MOD = 1e9+;
 8 int dp[MAX][MAX];
 9 vector<int> v[MAX];
 void init()
 {
     memset(dp,,sizeof(dp));
     for(int i=;i<MAX;i++) dp[][i]=;
     for(int i=;i<MAX;i++)
     {
         for(int j=;j<=i;j++)
         {
             if(i%j==) v[i].push_back(j);
         }
     }
 }
 int main()
 {
     int n,k;
     init();
     scanf("%d %d",&n,&k);
     for(int j=;j<=n;j++)
     for(int i=;i<=k;i++)
     {
         for(int m=;m<v[j].size();m++)
         {
             dp[i][j]=(dp[i][j]+dp[i-][v[j][m]])%MOD;
         }
     }
     int ans=;
     for(int i=;i<=n;i++) ans=(ans+dp[k][i])%MOD;
     printf("%d\n",ans%MOD);
     return ;

39 }

Codeforces Round #240 (Div. 2) D的更多相关文章

  1. Codeforces Round #240 (Div. 2)->A. Mashmokh and Lights

    A. Mashmokh and Lights time limit per test 1 second memory limit per test 256 megabytes input standa ...

  2. Codeforces Round #240 (Div. 2)(A -- D)

    点我看题目 A. Mashmokh and Lights time limit per test:1 secondmemory limit per test:256 megabytesinput:st ...

  3. Codeforces Round #240 (Div. 1)B---Mashmokh and ACM(水dp)

    Mashmokh's boss, Bimokh, didn't like Mashmokh. So he fired him. Mashmokh decided to go to university ...

  4. Codeforces Round #240 (Div. 2) B 好题

    B. Mashmokh and Tokens time limit per test 1 second memory limit per test 256 megabytes input standa ...

  5. Codeforces Round #240 (Div. 1) B. Mashmokh and ACM DP

                                                 B. Mashmokh and ACM                                     ...

  6. Codeforces Round #240 (Div. 2) C Mashmokh and Numbers

    , a2, ..., an such that his boss will score exactly k points. Also Mashmokh can't memorize too huge ...

  7. Codeforces Round #240 (Div. 2) 题解

    A: 1分钟题,往后扫一遍 int a[MAXN]; int vis[MAXN]; int main(){ int n,m; cin>>n>>m; MEM(vis,); ; i ...

  8. Codeforces Round #366 (Div. 2) ABC

    Codeforces Round #366 (Div. 2) A I hate that I love that I hate it水题 #I hate that I love that I hate ...

  9. Codeforces Round #354 (Div. 2) ABCD

    Codeforces Round #354 (Div. 2) Problems     # Name     A Nicholas and Permutation standard input/out ...

随机推荐

  1. SpringBoot2.x版本整合SpringSecurity、Oauth2进行password认证

    很多人在进行项目开发时都会用到Oauth2.0结合SpringSecurity或者Shiro进行权限拦截以及用户验证,网上也有很多的案例,前几天项目里边需要用到,顺便整合了进来,特此写篇博客,记录下过 ...

  2. web界面bug-临时

    一.登录页面 二.首页 三.项目 四.项目池 五.专家管理 六.审批 七.日/周报 八.设置

  3. 贪心 Codeforces Round #135 (Div. 2) C. Color Stripe

    题目传送门 /* 贪心:当m == 2时,结果肯定是ABABAB或BABABA,取最小改变量:当m > 2时,当与前一个相等时, 改变一个字母 同时不和下一个相等就是最优的解法 */ #incl ...

  4. magento Grid 显示下拉菜单属性

    在使用grid时自己新建了几个属性,然后其中有一个是下拉单,即deal_status protected function _prepareCollection() { $collection = M ...

  5. Storm编程入门API系列之Storm的可靠性的ACK消息确认机制

    概念,见博客 Storm概念学习系列之storm的可靠性  什么业务场景需要storm可靠性的ACK确认机制? 答:想要保住数据不丢,或者保住数据总是被处理.即若没被处理的,得让我们知道. publi ...

  6. myBatis逆向生成及使用

    引入数据库驱动 <!-- mybatis逆向生成包 --><dependency> <groupId>org.mybatis.generator</group ...

  7. CF814C An impassioned circulation of affection

    思路: 对于题目中的一个查询(m, c),枚举子区间[l, r](0 <= l <= r < n),若该区间满足其中的非c字符个数x不超过m,则可以将其合法转换为一个长度为r-l+1 ...

  8. 安卓开发常用网络请求框架OkHttp、Volley、XUtils、Retrofit对比

    网络请求框架总结1.xutils     此框架庞大而周全,这个框架可以网络请求,同时可以图片加载,又可以数据存储,又可以 View 注解,使用这种框架很方便,这样会使得你整个项目对它依赖性太强,万一 ...

  9. Farseer.net轻量级开源框架 入门篇:添加数据详解

    导航 目   录:Farseer.net轻量级开源框架 目录 上一篇:Farseer.net轻量级开源框架 入门篇: 分类逻辑层 下一篇:Farseer.net轻量级开源框架 入门篇: 修改数据详解 ...

  10. Xcode 6 Beta 高速官方下载地址

    推荐迅雷下载: http://adcdownload.apple.com//wwdc_2014/xcode_6_beta_ie8g3n/xcode_6_beta.dmg