Educational Codeforces Round 14E. Xor-sequences(矩阵快速幂)
传送门
题意
给定序列,从序列中选择k(1≤k≤1e18)个数(可以重复选择),使得得到的排列满足\(x_i与x_{i+1}\)异或的二进制表示中1的个数是3的倍数。问长度为k的满足条件的序列有多少种?
分析
看了tags发现有关矩阵就跟最近做的矩阵快速幂联系起来了,假如ai与aj异或的数满足条件,可以看作i到j练了一条边,再异或后的数到ak也连边,那么如果找长度为3的序列,(ai,aj,ak)一定满足条件
我们可以
1.先\(O(n^2)\)预处理出k=2情况下的邻接矩阵
2.对矩阵求k-1次幂
3.矩阵里的数求和
这道题做完了不妨做做这道题Mistwald,也是类似的一道题
trick
1.注意开long long
2.如果k=1,输出n
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define F(i,a,b) for(int i=a;i<=b;++i)
#define ll long long
#define mem(a,b) memset(a,b,sizeof(a))
int n;
const ll mod = 1e9+7;
ll k,a[101];
struct matrix
{
ll m[111][111];
}ans,ret;
bool check(ll x,ll y)
{
ll tmp=x^y;
int cnt=0;
while(tmp){ cnt+=tmp&1;tmp>>=1; }
if(cnt%3==0) return 1;return 0;
}
matrix multi(matrix x,matrix y)
{
matrix tmp;
F(i,1,n)F(j,1,n)
{
tmp.m[i][j]=0;
F(k,1,n) (tmp.m[i][j]+=x.m[i][k]*y.m[k][j])%=mod;
}
return tmp;
}
void quick_mod(ll p)
{
for(;p;p>>=1,ret=multi(ret,ret)) if(p&1) ans=multi(ans,ret);
}
int main()
{
scanf("%d %lld",&n,&k);
F(i,1,n) scanf("%lld",a+i);
if(k==1) { printf("%d\n",n);return 0; }
F(i,1,n)F(j,1,n)if(check(a[i],a[j])) ret.m[i][j]=1;
F(i,1,n) ans.m[i][i]=1;
quick_mod(k-1);
ll cnt=0;
F(i,1,n)F(j,1,n) (cnt+=ans.m[i][j])%=mod;
printf("%lld\n",cnt);
}
Educational Codeforces Round 14E. Xor-sequences(矩阵快速幂)的更多相关文章
- Educational Codeforces Round 60 D dp + 矩阵快速幂
https://codeforces.com/contest/1117/problem/D 题意 有n个特殊宝石(n<=1e18),每个特殊宝石可以分解成m个普通宝石(m<=100),问组 ...
- Educational Codeforces Round 52E(构造,快速幂)
#include <bits/stdc++.h>using namespace std;const int mod=998244353;long long b[200007];long l ...
- Codeforces Round #257 (Div. 2) B. Jzzhu and Sequences (矩阵快速幂)
题目链接:http://codeforces.com/problemset/problem/450/B 题意很好懂,矩阵快速幂模版题. /* | 1, -1 | | fn | | 1, 0 | | f ...
- Codeforces 450B div.2 Jzzhu and Sequences 矩阵快速幂or规律
Jzzhu has invented a kind of sequences, they meet the following property: You are given x and y, ple ...
- codeforces 450B B. Jzzhu and Sequences(矩阵快速幂)
题目链接: B. Jzzhu and Sequences time limit per test 1 second memory limit per test 256 megabytes input ...
- Codeforces 1067D - Computer Game(矩阵快速幂+斜率优化)
Codeforces 题面传送门 & 洛谷题面传送门 好题. 首先显然我们如果在某一次游戏中升级,那么在接下来的游戏中我们一定会一直打 \(b_jp_j\) 最大的游戏 \(j\),因为这样得 ...
- codeforces 678D Iterated Linear Function 矩阵快速幂
矩阵快速幂的题要多做 由题可得 g[n]=A*g[n-1]+B 所以构造矩阵 { g[n] } = {A B} * { g[n-1]} { 1 } {0 1 ...
- Codeforces 185A Plant( 递推关系 + 矩阵快速幂 )
链接:传送门 题意:输出第 n 年向上小三角形的个数 % 10^9 + 7 思路: 设 Fn 为第 n 年向上小三角形的个数,经过分析可以得到 Fn = 3 * Fn-1 + ( 4^(n-1) - ...
- 2017 Wuhan University Programming Contest (Online Round) Lost in WHU 矩阵快速幂 一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开。
/** 题目:Lost in WHU 链接:https://oj.ejq.me/problem/26 题意:一个无向图,求从1出发到达n最多经过T条边的方法数,边可以重复经过,到达n之后不可以再离开. ...
随机推荐
- msp430入门编程41
msp430中C语言的软件工程--状态机建模
- angularjs ngRoute的使用简单例子
很丑的小例子,刚学angularjs,写下来方面以后看. 1.例子的工程目录如下: 2.index.html代码如下: <!DOCTYPE html><html><hea ...
- Gearman 初窥【转载】
Gearman是一个分发任务的程序框架,可以用在各种场合,与Hadoop相 比,Gearman更偏向于任务分发功能.它的任务分布非常简单,简单得可以只需要用脚本即可完成.Gearman最初用于Live ...
- HDU——2444 The Accomodation of Students
The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- Java实现网页截屏
原文:http://www.open-open.com/code/view/1424006089452 import java.awt.AWTException; import java.awt.De ...
- 如何在不允许联网的环境下使用Maven开发
前言:Maven的运行机理是:Maven核心组件先去本地的.m2目录下的库中去寻找依赖或者插件,如果本地库里没有,如果配置了私服则上私服去下载依赖或者插件,如果私服上没有,则上中央服务等Maven服务 ...
- 【spring+websocket的使用】
一.spring配置文件Java代码 <?xml version="1.0" encoding="UTF-8"?> <beans xmlns= ...
- Angular45
Angular 4 Tutorial for Beginners: Learn Angular 4 from Scratch https://www.youtube.com/watch?v=k5E2A ...
- int&boolean——Java和C的一点小差别
Java和C的差别非常多.只是预计这一点非常多人都不知道. 今天面试时碰到这么道C语言题 求执行结果 int x = -1; while(!x!=0){ cout<<x<<en ...
- mac for smartSVN9 (8,9)破解方法 附smartSvn_keygen工具图文
mac for smartSVN9 (8,9)破解方法 附smartSvn_keygen工具 工具文件下载: http://files.cnblogs.com/files/xueshanshan/s ...