做了非常久......

题目链接:  http://acm.hdu.edu.cn/showproblem.php?pid=4587

先枚举删除的第一个点,第二个点就是找割点。没有割点当然也有答案

学到的:

1、图论硬套模板不太现实,比方这道题,我能想到孤立点是特殊情况,删除孤立点。连通分支个数会降低一,可是一直处理不好,最后按缩点的做法搞了。

推断是不是孤立点的方法:

就是先用一个数组scnt[i]=j,vv[j]++  表示点i在以j为祖先的联通分支里,并且每次都让vv[j]++,就使得vv[j]表示以j为祖先的连通分支的点的个数为vv[j],这个但是没模版的。自己乱改搞出来的,開始试了几种其它方法都WA。。。

2、我自己的求割点的模板里,subset[i]==0的时候,就表示删除该点的时候。其连通分支数没有添加,这包括了悬挂顶点和孤立顶点。求是不是割点的时候。仅仅要subset[v]>0,那么v就是割点,可是在求删除该点之后的连通分支个数的时候,悬挂顶点和孤立顶点这两种情况是要分开的,假设subset[i]==0
&& i是悬挂顶点。连通分支数目不变。假设subset[i]==0 && i是孤立点。连通分支数目减一。所以1中推断是不是孤立点的方法还是比較重要的

3、这道题開始的时候全然没有思路。由于一直想的都是“两个点一起删除怎么让连通分支数目最多“,而没有尝试这么思考:”想删一个点,然后在删除一个点“(就是说放一块思考想不出来就一步一步想),也没有这么思考”不知道怎么做决策的时候就枚举“,由于时间12s。足够枚举。我的代码也在6000ms之内跑出来了。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std; const int MAXN =5000*2+100;
struct Node
{
int to,next,from;
int u;
}e[MAXN];
int n,m;
int head[MAXN];
int vis[MAXN],son, subset[MAXN],dfn[MAXN],low[MAXN],tmpdfn,first,vv[MAXN],scnt[MAXN];
void init()
{
memset(head,-1,sizeof(head));
for(int i=0;i<n*2+10;i++)e[i].from=-1;
} void addedge(int u,int v,int k)
{
e[k].to=v;
e[k].from=u;
e[k].next=head[u];
//e[k].u=0;
head[u]=k;
}
int rt;
void init2()
{
tmpdfn=0;
memset(subset,0,sizeof(subset));
memset(vis,0,sizeof(vis));
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(vv,0,sizeof(vv));
memset(scnt,-1,sizeof(scnt));
} void dfs(int u)
{
dfn[u]=low[u]=++tmpdfn;
for(int j=head[u];j!=-1;j=e[j].next)
{
if(e[j].to!=first)//
{
int v=e[j].to;
if(!vis[v])
{
vis[v]=1;
scnt[v]=rt,vv[rt]++;
dfs(v);
low[u]=min(low[u],low[v]);
if(low[v]>=dfn[u])
{
if(u == rt)son++;
else subset[u]++;
}
}
else
{
low[u]=min(low[u],dfn[v]);
}
}
}
} int solve()
{
int ans=0,cnt=0;
for(int k=0;k<n;k++)
{
//删点
first=k;
init2();
cnt=0; for(int i=0;i<n;i++)
{
if(i!=first)
{
if(!vis[i])
{
son=0;
rt=i;
cnt++;
vis[i]=1;
scnt[rt]=rt,vv[rt]++;
dfs(i);
if(son)subset[rt]=son-1;
}
}
}
int pos=-1,mmax=0;
for(int i=0;i<n;i++)
if(i != first )//ans=max(ans,subset[i]+cnt);//cnt-1+subset[i]+1
{
if(mmax<subset[i]+cnt)
{
pos=i;
mmax=subset[i]+cnt;
}
}
if(vv[scnt[pos]] == 1)mmax--;//不是割点。去掉该点后,连通分支数不会添加
ans=max(ans,mmax);
}
return ans;
} int main()
{
//freopen("hdu4587.txt","r",stdin);
int u,v,k;
while(~scanf("%d%d",&n,&m))
{
init();
for(int i=0,k=0;i<m;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v,k++);
addedge(v,u,k++);
}
printf("%d\n",solve());
}
return 0;
}

hdu 4587 推断孤立点+割点+ 删除点之后,剩下多少连通分量的更多相关文章

  1. HDU 4587 TWO NODES 枚举+割点

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 TWO NODES Time Limit: 24000/12000 MS (Java/Other ...

  2. HDU 4587 TWO NODES(割点)(2013 ACM-ICPC南京赛区全国邀请赛)

    Description Suppose that G is an undirected graph, and the value of stab is defined as follows: Amon ...

  3. HDU 4587 TWO NODES 割点

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4587 题意: 删除两个点,使连通块的数目最大化 题解: 枚举删除第一个点,然后对删除了第一个点的图跑 ...

  4. hdu 4587(割点的应用)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4587 思路:题目的意思很简单,就是删除任意2个节点以及关联的边,求图的最大连通分量数.我们知道删除割点 ...

  5. HDU - 4587 TWO NODES (图的割点)

    Suppose that G is an undirected graph, and the value of stab is defined as follows: Among the expres ...

  6. hdu 4587 2013南京邀请赛B题/ / 求割点后连通分量数变形。

    题意:求一个无向图的,去掉两个不同的点后最多有几个连通分量. 思路:枚举每个点,假设去掉该点,然后对图求割点后连通分量数,更新最大的即可.算法相对简单,但是注意几个细节: 1:原图可能不连通. 2:有 ...

  7. HDU 4587 TWO NODES(割两个点的最大连通分支数)

    http://acm.hdu.edu.cn/showproblem.php?pid=4587 题意: 给一图,求割去两个点后所能形成的最大连通分支数. 思路: 对于这种情况,第一个只能枚举,然后在删除 ...

  8. HDU 5687 字典树插入查找删除

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5687 2016百度之星资格赛C题,直接套用字典树,顺便巩固了一下自己对字典树的理解 #include< ...

  9. HDU 4587 B - TWO NODES tarjan

    B - TWO NODESTime Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://acm.hust.edu.cn/vjudge/contest/view ...

随机推荐

  1. Jenkins+ant+jmeter接口自动化

    1.Jenkins新建slave节点 2.Jenkins新建job,配置job,关联到slave, 3.执行构建 build文件如下 <?xml version="1.0" ...

  2. js中true和false判断

    布尔类型里只有这6参数个返回false,其它都为true Boolean(false) // false Boolean(undefined) // false Boolean(null) // fa ...

  3. Android setOnPageChangeListener 过时了怎么办?

    今天使用ViewPager发现setOnPageChangeListener的方法居然过期了,而且AS编译不通过了,最后查了一下原来把set换成add了,代码如下: setOnPageChangeLi ...

  4. NodeJS、NPM安装配置步骤

    安装NodeJS和NPM 1.Node JS 官网下载地址 https://nodejs.org/en/download/ 2.安装完后,使用cmd 命令输入两个命令,查看安装状态 node -v n ...

  5. TCP/IP和UDP的比较

    TCP.UDP详解 1.传输层存在的必要性 由于网络层的分组传输是不可靠的,无法了解数据到达终点的时间,无法了解数据未达终点的状态.因此有必要增强网络层提供服务的服务质量. 2.引入传输层的原因 面向 ...

  6. "HybridDB · 性能优化 · Count Distinct的几种实现方式” 读后感

    原文地址:HybridDB · 性能优化 · Count Distinct的几种实现方式 HybridDB是阿里基于GreenPlum开发的一款MPP分析性数据库,而GreenPlum本身基于Post ...

  7. 后台中的sql注入

    aa.getSqlMap().put("order"," and a.id not in(\'"+po.getId()+"\')"); \' ...

  8. [Algorithm] 4. Ugly Number II

    Description Ugly number is a number that only havefactors 2, 3 and 5. Design an algorithm to find th ...

  9. selenium的调用

    selenium的调用 制作人:全心全意 selenium调用谷歌浏览器 chrome = webdriver.Chrome() //创建谷歌浏览器对象 url="http://www.ba ...

  10. python 配置文件 ConfigParser模块

    ConfigParser模块 用于生成和修改常见配置文档,当前模块的名称在 python 3.x 版本中变更为 configparser. 来看一个好多软件的常见文档格式如下 [DEFAULT] Se ...