CodeForces242D:Connected Components (不错的并查集)
We already know of the large corporation where Polycarpus works as a system administrator. The computer network there consists of n computers and m cables that connect some pairs of computers. In other words, the computer network can be represented as some non-directed graph with n nodes and m edges. Let's index the computers with integers from 1 to n, let's index the cables with integers from 1 to m.
Polycarpus was given an important task — check the reliability of his company's network. For that Polycarpus decided to carry out a series of k experiments on the computer network, where the i-th experiment goes as follows:
- Temporarily disconnect the cables with indexes from li to ri, inclusive (the other cables remain connected).
- Count the number of connected components in the graph that is defining the computer network at that moment.
- Re-connect the disconnected cables with indexes from li to ri (that is, restore the initial network).
Help Polycarpus carry out all experiments and for each print the number of connected components in the graph that defines the computer network through the given experiment. Isolated vertex should be counted as single component.
Input
The first line contains two space-separated integers n, m (2 ≤ n ≤ 500; 1 ≤ m ≤ 104) — the number of computers and the number of cables, correspondingly.
The following m lines contain the cables' description. The i-th line contains space-separated pair of integers xi, yi (1 ≤ xi, yi ≤ n; xi ≠ yi) — the numbers of the computers that are connected by the i-th cable. Note that a pair of computers can be connected by multiple cables.
The next line contains integer k (1 ≤ k ≤ 2·104) — the number of experiments. Next k lines contain the experiments' descriptions. The i-th line contains space-separated integers li, ri (1 ≤ li ≤ ri ≤ m) — the numbers of the cables that Polycarpus disconnects during the i-th experiment.
Output
Print k numbers, the i-th number represents the number of connected components of the graph that defines the computer network during the i-th experiment.
Example
6 5
1 2
5 4
2 3
3 1
3 6
6
1 3
2 5
1 5
5 5
2 4
3 3
4
5
6
3
4
2
问题:给定N个点,M条边,Q个问题。对于每个问题,给出l,r,问删去编号在l到r的这些边后有多少个连通块。
思路:开始以为需要上面数据结构来处理,没有想出来。
由于问题的特殊性,只有提问,没有更改,所以可以利用并查集的特殊性求解。令L是从前往后的并查集,R是从后往前的并查集,然后对每个问题,合并L[l-1]和R[r+1]即可。
合并:开始ans=N,合并一次,ans--。
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
int N,M,Q;
struct DSU
{
int fa[],num;
void init()
{
num=;
for(int i=;i<=N;i++)
fa[i]=i;
}
int find(int u)
{
if(fa[u]==u) return u;
fa[u]=find(fa[u]);
return fa[u];
}
void Union(int u,int v)
{
int fau=find(u);
int fav=find(v);
if(fau!=fav) num++,fa[fau]=fav;
}
}L[maxn],R[maxn]; int x[maxn],y[maxn],anc[maxn];
int main()
{
scanf("%d%d",&N,&M);
for(int i=;i<=M;i++) {
scanf("%d%d",&x[i],&y[i]);
} L[].init();
for(int i=;i<=M;i++){
L[i]=L[i-];
L[i].Union(x[i],y[i]);
}
R[M+].init();
for(int i=M;i>=;i--){
R[i]=R[i+];
R[i].Union(x[i],y[i]);
} int l,r,ans; scanf("%d",&Q);
while(Q--){
scanf("%d%d",&l,&r);
ans=;
DSU tmp=L[l-];
for(int i=;i<=N;i++){
tmp.Union(i,R[r+].find(i));
}
printf("%d\n",N-tmp.num);
}
return ;
}
CodeForces242D:Connected Components (不错的并查集)的更多相关文章
- F - Number of Connected Components UVALive - 7638 (并查集 + 思维)
题目链接:https://cn.vjudge.net/contest/275589#problem/F 题目大意:就是给你n个数,如果说两个数之间的gcd!=1,那么就将这两个点连起来,问你最终这些点 ...
- find the most comfortable road(hdu1598)不错的并查集
find the most comfortable road Time Limit: 1000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- T^T OJ 2144 并查集( 并查集... )
链接:传送门 思路:增加num[] 记录集合中的个数,maxx[] 记录集合中最大值,挺不错的并查集练习题,主要是 unite 函数里如何改变一些东西,挺好的题,能用C尽量不用C++,效率差蛮大的! ...
- D. Connected Components Croc Champ 2013 - Round 1 (并查集+技巧)
292D - Connected Components D. Connected Components time limit per test 2 seconds memory limit per t ...
- CF-292D Connected Components 并查集 好题
D. Connected Components 题意 现在有n个点,m条编号为1-m的无向边,给出k个询问,每个询问给出区间[l,r],让输出删除标号为l-r的边后还有几个连通块? 思路 去除编号为[ ...
- 323. Number of Connected Components in an Undirected Graph按照线段添加的并查集
[抄题]: Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of n ...
- 【并查集】【枚举倍数】UVALive - 7638 - Number of Connected Components
题意:n个点,每个点有一个点权.两个点之间有边相连的充要条件是它们的点权不互素,问你这张图的连通块数. 从小到大枚举每个素数,然后枚举每个素数的倍数,只要这个素数的某个倍数存在,就用并查集在这些倍数之 ...
- CodeForces 292D Connected Components (并查集+YY)
很有意思的一道并查集 题意:给你n个点(<=500个),m条边(<=10000),q(<=20000)个询问.对每个询问的两个值xi yi,表示在从m条边内删除[xi,yi]的边后 ...
- uva live 7638 Number of Connected Components (并查集)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
随机推荐
- 数学知识巧学JCF(Java Collections framework)
不知你是否还记得高中我们学过的集合,映射,函数,数学确实很牛逼,拿它来研究java集合类,轻而易举的就把知识理解了.本篇文章适合初学java集合类的小白,也适合补充知识漏缺的学习者,同时也是面试者可以 ...
- codeforces 946G
题意: 有一个长度为n的数组a.你可以删除一个位置之后进行操作,一次操作可以把任意位置上的数字变成任意的值,问最少需要多少操作能使得数列变成严格上升的. n<=200000 分析: 如果没有删除 ...
- Eclipse FindBugs的安装
原文:http://blog.sina.com.cn/s/blog_62186b460100l3mx.html 1安装:首先到官方网站下载最新版本FindBugs http://findbugs ...
- 在Ubuntu 10.10下安装JDK配置Eclipse及Tomcat
1.安装JDK 1.1.到官网下载相关的JDK 这里下载的是 jdk-6u23-linux-i586.bin. 下载地址:http://www.oracle.com/technetwork/java/ ...
- Error: cannot call methods on draggable prior to initialization; attempted to call
cannot call methods on draggable prior to initialization; attempted to call 报这个问题的根本原因是由于你的引用文件有问题 ...
- vue - 前置工作 - 安装vsCode以及插件
开发环境:Win7 x64 开发工具:vsCOde 开发工具vsCode插件配置:Vetur.ivue.Vue 2 Snippets Vetur:强力推荐的一款插件,为什么呢? 格式化代码.高亮.代码 ...
- LInux查看CPU状态
1.htop 2.top 内容解释: PID:进程的ID USER:进程所有者 PR:进程的优先级别,越小越优先被执行 NInice:值 VIRT:进程占用的虚拟内存 RES:进程占用的物理内存 SH ...
- php生成.php文件
<?php // -- test.php -- // //搜集资料 $str_tmp="<?php\r\n"; //得到php的起始符.$str_tmp将累加 $str ...
- DW 表格与表单
CSS样式表
- 【转载】细聊分布式ID生成方法
一.需求缘起 几乎所有的业务系统,都有生成一个记录标识的需求,例如: (1)消息标识:message-id (2)订单标识:order-id (3)帖子标识:tiezi-id 这个记录标识往往就是数据 ...