Collecting Bugs

Time Limit: 10000MS   Memory Limit: 64000K
Total Submissions: 6237   Accepted: 3065
Case Time Limit: 2000MS   Special Judge

Description


Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other material stuff, he collects software bugs. When Ivan gets a new program, he classifies all possible bugs into n categories. Each day he discovers exactly one bug in the program and adds information about it and its category into a spreadsheet. When he finds bugs in all bug categories, he calls the program disgusting, publishes this spreadsheet on his home page, and forgets completely about the program. 
Two companies, Macrosoft and Microhard are in tight competition. Microhard wants to decrease sales of one Macrosoft program. They hire Ivan to prove that the program in question is disgusting. However, Ivan has a complicated problem. This new program has s subcomponents, and finding bugs of all types in each subcomponent would take too long before the target could be reached. So Ivan and Microhard agreed to use a simpler criteria --- Ivan should find at least one bug in each subsystem and at least one bug of each category. 
Macrosoft knows about these plans and it wants to estimate the time that is required for Ivan to call its program disgusting. It's important because the company releases a new version soon, so it can correct its plans and release it quicker. Nobody would be interested in Ivan's opinion about the reliability of the obsolete version. 
A bug found in the program can be of any category with equal probability. Similarly, the bug can be found in any given subsystem with equal probability. Any particular bug cannot belong to two different categories or happen simultaneously in two different subsystems. The number of bugs in the program is almost infinite, so the probability of finding a new bug of some category in some subsystem does not reduce after finding any number of bugs of that category in that subsystem. 
Find an average time (in days of Ivan's work) required to name the program disgusting.

Input


Input file contains two integer numbers, n and s (0 < n, s <= 1 000).

Output


Output the expectation of the Ivan's working days needed to call the program disgusting, accurate to 4 digits after the decimal point.

Sample Input


 

Sample Output


3.0000

题意:

有n个系统,s种bug。问在n个系统种都找到bug,s种bug都找到的期望天数是多少?

期望值: 

 简单说下什么是期望值。就是的得到的结果 * 概率的总和。

举个简单的例子,掷骰子的期望为: 1 * 1/6 + 2 * 1/6 + 3 * 1/6 + 4 * 1/6 + 5 * 1/6 + 6 * 1/6 = 3.5

分析:

一般求期望Dp都是倒着推的。

先定义dp[i][j]表示已经在n个系统中找到i个系统的bug,在s种bug中找到j种bug的期望值。

我们先看顺着推可以:

由dp[i][j] 推得 dp[i + 1][j]  , 概率为p1 = (n - i)/ n * j  / s;(表示在接下来一天新找到一个系统bug,没找到新的种类bug)

由dp[i][j] 推得 dp[i][j +1]  ,概率为p2 =  i / n* (s - j)/ s;(表示在接下来一天没找到新的一个系统bug,找到新的种类bug)

由dp[i][j] 推得 dp[i + 1][j +1]  ,概率为p3 = (n - i)/ n *(s - j)/ s;(表示在接下来一天找到新的一个系统bug,找到新的种类bug)

由dp[i][j] 推得 dp[i + 1][j]  ,概率为p4 = i / n * j / s;(表示在接下来一天新没找到新的一个系统bug,没找到新的种类bug)

四个情况的概率相加是等于 1 。

可以得到dp方程 dp[i][j] = (dp[i + 1][j] + 1) * p1 + (dp[i][j + 1]  + 1)* p2  + (dp[i + 1][j + 1] + 1)* p3 + (dp[i][j] + 1)* p4。

移项化简得到:dp[i][j]= ( n*s + (n-i)*j*dp[i+1,j] + i*(s-j)*dp[i,j+1] + (n-i)*(s-j)*dp[i+1,j+1] )/( n*s - i*j ) 。

因为dp[n][s]时 所有都已经找到 期望为 0.最后倒着推出dp[0][0]即可

(因为此题特别坑,输出不能用%.4lf 要用%.4f Wa了三次,看评论才知道Ac了)

感谢:http://www.cnblogs.com/flipped/p/5230359.html为我提供了思路,本来期望dp很弱的我只有慢慢学了。

附上AC代码:

# include <iostream>
# include <cstdio>
# include <cstring>
using namespace std;
const int N = ;
double dp[N][N];
int n,s;
int main(){
scanf("%d %d",&n,&s);
for(int i = n;i >= ;i--){
for(int j = s;j >= ;j--){
if(i != n || j != s){
dp[i][j] += dp[i + ][j] * (n - i) * j + dp[i][j + ] * i * (s - j);
dp[i][j] += dp[i + ][j + ] * (n - i) * (s - j) + n * s;
dp[i][j] = dp[i][j] / ((n * s - i * j));
}
}
}
printf("%.4f",dp[][]);
}

[Poj2096]Collecting Bugs(入门期望dp)的更多相关文章

  1. poj2096 Collecting Bugs(概率dp)

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 1792   Accepted: 832 C ...

  2. poj 2096 Collecting Bugs(期望 dp 概率 推导 分类讨论)

    Description Ivan is fond of collecting. Unlike other people who collect post stamps, coins or other ...

  3. POJ 2096 Collecting Bugs:期望dp

    题目链接:http://poj.org/problem?id=2096 题意: 有一个程序猿,他每天都会发现一个bug. bug共有n个种类.属于某一个种类的概率为1/n. 有s个子系统,每个bug属 ...

  4. POJ-2096 Collecting Bugs (概率DP求期望)

    题目大意:有n种bug,m个程序,小明每天能找到一个bug.每次bug出现的种类和所在程序都是等机会均等的,并且默认为bug的数目无限多.如果要使每种bug都至少找到一个并且每个程序中都至少找到一个b ...

  5. [poj2096] Collecting Bugs【概率dp 数学期望】

    传送门:http://poj.org/problem?id=2096 题面很长,大意就是说,有n种bug,s种系统,每一个bug只能属于n中bug中的一种,也只能属于s种系统中的一种.一天能找一个bu ...

  6. 【POJ 2096】Collecting Bugs 概率期望dp

    题意 有s个系统,n种bug,小明每天找出一个bug,可能是任意一个系统的,可能是任意一种bug,即是某一系统的bug概率是1/s,是某一种bug概率是1/n. 求他找到s个系统的bug,n种bug, ...

  7. poj2096 Collecting Bugs[期望dp]

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 5394   Accepted: 2670 ...

  8. POJ2096 Collecting Bugs(概率DP,求期望)

    Collecting Bugs Ivan is fond of collecting. Unlike other people who collect post stamps, coins or ot ...

  9. poj 2096 Collecting Bugs 【概率DP】【逆向递推求期望】

    Collecting Bugs Time Limit: 10000MS   Memory Limit: 64000K Total Submissions: 3523   Accepted: 1740 ...

随机推荐

  1. JDBC基础-setFetchSize方法

    在Statement和ResultSet接口中都有setFetchSize方法 void setFetchSize(int rows) throws SQLException 查看API文档 Stat ...

  2. Smart Contracts

    A smart contract is a computer code running on top of a blockchain containing a set of rules under w ...

  3. swift Equatable 的缺省实现

    Starting from Swift 4.1, all you have to is to conform to the Equatable protocol without the need of ...

  4. 中间件及tomcat的内存溢出调优

    主要是这三个选项的调整需要根据主机的内存配置 以及业务量的使用情况调节 -Xmx4g -Xms4g -Xmn2g xmx 与xms一般设置为一样 xmn大致设置为xmx xms的三分之一   可以使用 ...

  5. 优先队列 || POJ 1442 Black Box

    给n个数,依次按顺序插入,第二行m个数,a[i]=b表示在第b次插入后输出第i小的数 *解法:写两个优先队列,q1里由大到小排,q2由小到大排,保持q2中有i-1个元素,那么第i小的元素就是q2的to ...

  6. PHP20 PHP面向对象辅助

    学习要点 常用函数 命名空间 类的自动加载 常用函数 class_exists 作用:检查类是否已定义 语法格式: bool class_exists ( string $class_name [, ...

  7. Encryption requires the OpenSSL PHP extension 报错

    报错截图: 解决办法: 修改php.ini配置文件,打开该拓展 open php.ini search “opensll” remove the semicolon from: extension=p ...

  8. java 数据库

    1.数据的概述 数据(data)是事实或观察的结果,是对客观事物的逻辑归纳,是用于表示客观事物的未经加工的的原始素材. 数据是信息的表现形式和载体,可以是符号.文字.数字.语音.图像.视频等.数据和信 ...

  9. git命令使用(二)

    上次写的git命令,基本上能够支持一个项目的基本运行了,但是git不是就那几个命令还有一些其他的命令,来看一下 创建一个文件夹,想在这个文件夹下创建项目,就执行这个命令就行 $ git init 里面 ...

  10. memcached内存分配

    Memcached默认情况下采用了名为Slab Allocator的机制分配.管理内存,最大单个存储对象大小为1M. page:分配给slab的最小内存空间,默认为1M,可以在启动时通过-l参数修改 ...