题目

  http://acm.hdu.edu.cn/showproblem.php?pid=6080

分析

  很妙的思路,将里面的点集当作A,将外面的点集当作B

  然后O(n^2)枚举两两B点,设一个是u,一个是v

    若所有的点A都在线段u->v的左边,那么u->v建条边

    若所有的点A都在线段u->v的右边,那么v->u建条边

  最后就是flyod求一下最小环就行了

  时间复杂度O(n^3)

hdu6080(最小环)的更多相关文章

  1. UVA 12544 - Beehives O(nm) 无向图最小环

    Bees are one of the most industrious insects. Since they collect nectarand pollen from flowers, they ...

  2. Vijos1046观光旅游[floyd 最小环]

    背景 湖南师大附中成为百年名校之后,每年要接待大批的游客前来参观.学校认为大力发展旅游业,可以带来一笔可观的收入. 描述 学校里面有N个景点.两个景点之间可能直接有道路相连,用Dist[I,J]表示它 ...

  3. floyd原理以及求最小环

    floyd这个东西学会了好久了,但是原理总是忘记,或者说没有真正的明白,这里在说一下. 我们要求的是任意的 i,j 之间的最短路径,用动态规划的思想来解决就是f[i,j,k]表示i到j中间节点不超过k ...

  4. HD1599 find the mincost route(floyd + 最小环)

    题目链接 题意:求最小环 第一反应时floyd判断,但是涉及到最少3个点,然后就不会了,又想的是 双联通分量,这个不知道为什么不对. Floyd 判断 最小环 #include <iostrea ...

  5. floyd离散,最小环

    Description 杭州有N个景区,景区之间有一些双向的路来连接,现在8600想找一条旅游路线,这个路线从A点出发并且最后回到A点,假设经过的路线为V1,V2,....VK,V1,那么必须满足K& ...

  6. Floyd判最小环算法模板

    算法思想:如果存在最小环,会在编号最大的点u更新最短路径前找到这个环,发现的方法是,更新最短路径前,遍历i,j点对,一定会发现某对i到j的最短路径长度dis[i][j]+mp[j][u]+mp[u][ ...

  7. [bzoj 1027][JSOI2007]合金(解析几何+最小环)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1027 分析: 首先因为一个合金的和为1,所以考虑2个材料合金能否合成一个需求合金的时候 ...

  8. POJ 1734 Sightseeing trip(无向图最小环+输出路径)

    题目链接 #include <cstdio> #include <string> #include <cstring> #include <queue> ...

  9. FZU 2090 旅行社的烦恼 floyd 求无向图最小环

    题目链接:旅行社的烦恼 题意是求无向图的最小环,如果有的话,输出个数,并且输出权值. 刚刚补了一发floyd 动态规划原理,用了滑动数组的思想.所以,这个题就是floyd思想的变形.在k从1到n的过程 ...

随机推荐

  1. whatis命令

    whatis——于查询一个命令执行什么功能 示例1: # whatis ls 显示ls命令的功能,和执行man命令时NAME信息差不多

  2. Android(java)学习笔记158:多线程断点下载的原理(JavaSE实现)

    1. 为什么需要多线程下载?     服务器的资源有限,同时的平均地分配给每个客户端.开启的线程越多抢占的服务的资源就越多,下载的速度就越块. 2. 下载速度的限制条件? (1)你的电脑手机宽带的带宽 ...

  3. Gym - 100676G Training Camp (状压dp)

    G. Training Camp[ Color: Yellow ]Montaser is planning to train very hard for ACM JCPC 2015; he has p ...

  4. windows下安装python

    1. 进入python官网   https://www.python.org/downloads/windows/ 2.根据我们的电脑位数选择版本,尽量选择  Download Windows x86 ...

  5. strict说明

  6. Bug的分类和管理流程

    1.按照严重程度划分 定义:是指Bug对软件质量的破坏程度,即BUG的存在将对软件的功能和性能产生怎样的影响 分类:系统崩溃.严重.一般.次要.建议 2.按优先级划分 定义:表示处理和修正软件缺陷的现 ...

  7. U盘制作安装盘后容量不能恢复的解决方案

    diskpartlist diskselect disk 0/1 --看具体U盘是0还是1clean

  8. centos 7 安装 docker(详细)

    更新源 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.backup wget -O/etc/yum.re ...

  9. Java多线程的同步方式和锁机制

    Object.wait(miliSec)/notify()/notifyAll() 线程调用wait()之后可以由notify()唤醒,如果指定了miliSec的话也可超时后自动唤醒.wait方法的调 ...

  10. [模板] Miller-Rabin 素数测试

    细节挺多的.. #include<iostream> #include<cstdlib> #include<cstdio> #include<ctime> ...