状态压缩的经典题。

按照一般做法,DP一维时间O(n),显然跑不过。考虑到石子较少,实际上有很长一段是一定可以跳到的,设两个石头分别在i点和j点,跳跃的路程为S到T。那么从i点可以跳到i+S到i+T。从j-T到j-S可以跳到J。显然当i和j相隔非常非常远时,从i到i+T中必然可以经过若干次跳跃,然后跳到j-T到j的任意一段。

然后状压,可以发现距离大于90(假设s和t不同,s(9)和t(10)的最小公倍数)一定可以到达,这样我们把石头之间的距离%90节省时间。

然后特判一下s==t的情况,就可以AC。但有一个问题,我将mod变成100,不特判s==t的情况,这样会WA,这个我无法理解。

数据:10000
7 7 100
1111 1118 1114 1117 3010 7508 1119 1105 899 1112 9667 3238 1108 5178 4627 2116 2089 9184 1115 8887 3565 3560 3559 3562 2410 3564 3571 565 3561 3566 3573 7432 9485 4484 7258 4555 8812 1291 3567 3221 5252 5253 5244 797 5251 7885 5245 9340 5255 6537 7737 5243 9316 5246 6694 6773 5247 6031 5256 5249 5484 5482 7513 5485 5479 5481 5480 5489 381 2572 9255 7624 5821 8606 7829 5488 442 5490 5492 8098 483 482 481 478 469 474 4054 472 471 4407 479 7006 475 470 3147 6933 9097 7781 473 2221
应该输出10但是改了输出13.

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int se[],a[],f[];
int main()
{
int L,s,t,n;
scanf("%d%d%d%d",&L,&s,&t,&n);
for(int i=;i<=n;i++)scanf("%d",&se[i]);
sort(se+,se+n+);
if(s==t)
{
int ans=;
for(int i=;i<=n;i++)
if(se[i]%s==)ans++;
printf("%d\n",ans);
return ;
}
for(int i=;i<=n;i++)se[i]=se[i-]+(se[i]-se[i-])%;
L=(L-se[n])%+se[n];
for(int i=;i<=n;i++)a[se[i]]=; memset(f,,sizeof(f));f[]=;
for(int i=s;i<=L+t;i++)
for(int j=s;j<=t;j++)
if(i>=j)
f[i]=min(f[i],f[i-j]+a[i]); int ans=;
for(int i=L;i<L+t;i++)ans=min(ans,f[i]);
printf("%d\n",ans);
return ;
}

caioj1522: [NOIP提高组2005]过河的更多相关文章

  1. Vijos P1002 过河 (NOIP提高组2005)

    链接:https://www.vijos.org/p/1002 解析: 若 p*x+(p+1)*y=Q(採用跳跃距离p和p+1时能够跳至不论什么位置Q),则在Q ≥ P*(P-1)时是一定有解的. 因 ...

  2. 【NOIP】提高组2005 过河

    [算法]状态压缩型DP [题解] Q=tx+(t-1)y 对于Q≥t(t-1),x,y一定有解. 所以当两石子间距离long>t(t-1)时,令long=t(t-1),重新构造数组即可. [注意 ...

  3. NOIP提高组2004 合并果子题解

    NOIP提高组2004 合并果子题解 描述:在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消 ...

  4. 计蒜客 NOIP 提高组模拟竞赛第一试 补记

    计蒜客 NOIP 提高组模拟竞赛第一试 补记 A. 广场车神 题目大意: 一个\(n\times m(n,m\le2000)\)的网格,初始时位于左下角的\((1,1)\)处,终点在右上角的\((n, ...

  5. 1043 方格取数 2000 noip 提高组

    1043 方格取数  2000 noip 提高组 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样 ...

  6. [NOIP提高组2018]货币系统

    [TOC] 题目名称:货币系统 来源:2018年NOIP提高组 链接 博客链接 CSDN 洛谷博客 洛谷题解 题目链接 LibreOJ(2951) 洛谷(P5020) 大视野在线评测(1425) 题目 ...

  7. NOIP提高组初赛难题总结

    NOIP提高组初赛难题总结 注:笔者开始写本文章时noip初赛新题型还未公布,故会含有一些比较老的内容,敬请谅解. 约定: 若无特殊说明,本文中未知数均为整数 [表达式] 表示:在表达式成立时它的值为 ...

  8. 津津的储蓄计划 NOIp提高组2004

    这个题目当年困扰了我许久,现在来反思一下 本文为博客园ShyButHandsome的原创作品,转载请注明出处 右边有目录,方便快速浏览 题目描述 津津的零花钱一直都是自己管理.每个月的月初妈妈给津津\ ...

  9. 2018.12.30【NOIP提高组】模拟赛C组总结

    2018.12.30[NOIP提高组]模拟赛C组总结 今天成功回归开始做比赛 感觉十分良(zhōng)好(chà). 统计数字(count.pas/c/cpp) 字符串的展开(expand.pas/c ...

随机推荐

  1. 利用nginx设置浏览器协商缓存

    强缓存与协商缓存的区别 强缓存:浏览器不与服务端协商直接取浏览器缓存 协商缓存:浏览器会先向服务器确认资源的有效性后才决定是从缓存中取资源还是重新获取资源 协商缓存运作原理 现在有一个这样的业务情景: ...

  2. .NET Core使用log4Net记录日志

    1.引入Nuget包 log4net 2.添加log4Net配置文件 <?xml version="1.0" encoding="utf-8" ?> ...

  3. Flask--修改默认的static文件夹的方法

    修改的flask默认的static文件夹只需要在创建Flask实例的时候,把static_folder和static_url_path参数设置为空字符串即可. app = Flask(__name__ ...

  4. String painter(区间DP)

    There are two strings A and B with equal length. Both strings are made up of lower case letters. Now ...

  5. [NOIP2000] 提高组 洛谷P1023 税收与补贴问题

    题目背景 每样商品的价格越低,其销量就会相应增大.现已知某种商品的成本及其在若干价位上的销量(产品不会低于成本销售),并假设相邻价位间销量的变化是线性的且在价格高于给定的最高价位后,销量以某固定数值递 ...

  6. 安装redis和phpredis模块

    安装redis shell> wget http://redis.googlecode.com/files/redis-2.0.4.tar.gz shell> tar zxvf redis ...

  7. HDU 5360 【优先队列+贪心】

    题意: 给定N个无序区间. 对合法区间的定义是: 在这个区间之前已经选出了至少l个合法区间,最多选出了r个合法区间.则该区间为合法区间. 输出最多能挑选出多少个合法区间,并输出合法区间的数量. 思路: ...

  8. 自定义mvc

    1. 什么是MVC MVC全名是Model View Controller,是模型(model)-视图(view)-控制器(controller)的缩写, 它是一种软件设计典范,用一种业务逻辑.数据. ...

  9. Spring的AOP AspectJ切入点语法详解(转)

    一.Spring AOP支持的AspectJ切入点指示符 切入点指示符用来指示切入点表达式目的,在Spring AOP中目前只有执行方法这一个连接点,Spring AOP支持的AspectJ切入点指示 ...

  10. Win7中你所应该知道的强制计划关机操作

    有时候更新系统补丁时,需要很长时间,为了能让电脑在你晚上睡觉后,扔然能做些枯燥费时类的这种工作,你可以用到强制计划关机.cmd命令是: shutdown -f -s -t 3600 上面的意思是,强制 ...