状态压缩的经典题。

按照一般做法,DP一维时间O(n),显然跑不过。考虑到石子较少,实际上有很长一段是一定可以跳到的,设两个石头分别在i点和j点,跳跃的路程为S到T。那么从i点可以跳到i+S到i+T。从j-T到j-S可以跳到J。显然当i和j相隔非常非常远时,从i到i+T中必然可以经过若干次跳跃,然后跳到j-T到j的任意一段。

然后状压,可以发现距离大于90(假设s和t不同,s(9)和t(10)的最小公倍数)一定可以到达,这样我们把石头之间的距离%90节省时间。

然后特判一下s==t的情况,就可以AC。但有一个问题,我将mod变成100,不特判s==t的情况,这样会WA,这个我无法理解。

数据:10000
7 7 100
1111 1118 1114 1117 3010 7508 1119 1105 899 1112 9667 3238 1108 5178 4627 2116 2089 9184 1115 8887 3565 3560 3559 3562 2410 3564 3571 565 3561 3566 3573 7432 9485 4484 7258 4555 8812 1291 3567 3221 5252 5253 5244 797 5251 7885 5245 9340 5255 6537 7737 5243 9316 5246 6694 6773 5247 6031 5256 5249 5484 5482 7513 5485 5479 5481 5480 5489 381 2572 9255 7624 5821 8606 7829 5488 442 5490 5492 8098 483 482 481 478 469 474 4054 472 471 4407 479 7006 475 470 3147 6933 9097 7781 473 2221
应该输出10但是改了输出13.

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int se[],a[],f[];
int main()
{
int L,s,t,n;
scanf("%d%d%d%d",&L,&s,&t,&n);
for(int i=;i<=n;i++)scanf("%d",&se[i]);
sort(se+,se+n+);
if(s==t)
{
int ans=;
for(int i=;i<=n;i++)
if(se[i]%s==)ans++;
printf("%d\n",ans);
return ;
}
for(int i=;i<=n;i++)se[i]=se[i-]+(se[i]-se[i-])%;
L=(L-se[n])%+se[n];
for(int i=;i<=n;i++)a[se[i]]=; memset(f,,sizeof(f));f[]=;
for(int i=s;i<=L+t;i++)
for(int j=s;j<=t;j++)
if(i>=j)
f[i]=min(f[i],f[i-j]+a[i]); int ans=;
for(int i=L;i<L+t;i++)ans=min(ans,f[i]);
printf("%d\n",ans);
return ;
}

caioj1522: [NOIP提高组2005]过河的更多相关文章

  1. Vijos P1002 过河 (NOIP提高组2005)

    链接:https://www.vijos.org/p/1002 解析: 若 p*x+(p+1)*y=Q(採用跳跃距离p和p+1时能够跳至不论什么位置Q),则在Q ≥ P*(P-1)时是一定有解的. 因 ...

  2. 【NOIP】提高组2005 过河

    [算法]状态压缩型DP [题解] Q=tx+(t-1)y 对于Q≥t(t-1),x,y一定有解. 所以当两石子间距离long>t(t-1)时,令long=t(t-1),重新构造数组即可. [注意 ...

  3. NOIP提高组2004 合并果子题解

    NOIP提高组2004 合并果子题解 描述:在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆.多多决定把所有的果子合成一堆. 每一次合并,多多可以把两堆果子合并到一起,消 ...

  4. 计蒜客 NOIP 提高组模拟竞赛第一试 补记

    计蒜客 NOIP 提高组模拟竞赛第一试 补记 A. 广场车神 题目大意: 一个\(n\times m(n,m\le2000)\)的网格,初始时位于左下角的\((1,1)\)处,终点在右上角的\((n, ...

  5. 1043 方格取数 2000 noip 提高组

    1043 方格取数  2000 noip 提高组 题目描述 Description 设有N*N的方格图(N<=10,我们将其中的某些方格中填入正整数,而其他的方格中则放入数字0.如下图所示(见样 ...

  6. [NOIP提高组2018]货币系统

    [TOC] 题目名称:货币系统 来源:2018年NOIP提高组 链接 博客链接 CSDN 洛谷博客 洛谷题解 题目链接 LibreOJ(2951) 洛谷(P5020) 大视野在线评测(1425) 题目 ...

  7. NOIP提高组初赛难题总结

    NOIP提高组初赛难题总结 注:笔者开始写本文章时noip初赛新题型还未公布,故会含有一些比较老的内容,敬请谅解. 约定: 若无特殊说明,本文中未知数均为整数 [表达式] 表示:在表达式成立时它的值为 ...

  8. 津津的储蓄计划 NOIp提高组2004

    这个题目当年困扰了我许久,现在来反思一下 本文为博客园ShyButHandsome的原创作品,转载请注明出处 右边有目录,方便快速浏览 题目描述 津津的零花钱一直都是自己管理.每个月的月初妈妈给津津\ ...

  9. 2018.12.30【NOIP提高组】模拟赛C组总结

    2018.12.30[NOIP提高组]模拟赛C组总结 今天成功回归开始做比赛 感觉十分良(zhōng)好(chà). 统计数字(count.pas/c/cpp) 字符串的展开(expand.pas/c ...

随机推荐

  1. 【07】Firebug监控网络情况

    [07] Firebug监控网络情况 Firebug可以监控网页中每个文件加载的时间. 打开Firebug.点击"网络",然后确定已经启用,重新载入当前页面.Firebug显示如下 ...

  2. Go内建变量类型

    package main import ( "math/cmplx" "fmt" "math" ) //内建变量类型: // bool , ...

  3. iOS-runtime-objc_setAssociatedObject(关联对象以及传值)

    例子: static const char kRepresentedObject; - (IBAction)doSomething:(id)sender { UIAlertView *alert = ...

  4. 【bzoj4260】 Codechef REBXOR trie树

    Input 输入数据的第一行包含一个整数N,表示数组中的元素个数. 第二行包含N个整数A1,A2,…,AN.     Output 输出一行包含给定表达式可能的最大值.   Sample Input ...

  5. android修改系统时系统黑屏时不进入休眠状态

    基于android4.4修改,在frameworks/base/services/java/com/android/server/power/PowerManagerService.java里,查看休 ...

  6. hihoCoder #1067 : 最近公共祖先·二 [ 离线LCA tarjan ]

    传送门: #1067 : 最近公共祖先·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上上回说到,小Hi和小Ho用非常拙劣——或者说粗糙的手段山寨出了一个神奇的网站 ...

  7. 快速让你明白Objective-C的语法(和Java、C++对比)

    很多想开发iOS,或者正在开发iOS的程序员以前都做过Java或者C++,当第一次看到Objective-C的代码时都会头疼,Objective-C的代码在语法上和Java, C++有着很大的区别,有 ...

  8. Spring实战Day2

    创建对象之后如何体现对象之间的依赖? Spring容器负责创建Bean和依赖注入,那么Spring是怎么将Bean装配在一起的呢? Spring提供了三种方式装配机制 1.隐式的bean发现机制和自动 ...

  9. 检查nginx配置,重载配置以及重启的方法

    原文  http://blogread.cn/it/article/4549?f=hot1 几个常用的nginx命令 Nginx 安装后只有一个程序文件,本身并不提供各种管理程序,它是使用参数和系统信 ...

  10. Spring中使用byType实现Beans自动装配

    以下内容引用自http://wiki.jikexueyuan.com/project/spring/beans-auto-wiring/spring-autowiring-byType.html: 此 ...