题目链接:https://vjudge.net/problem/HDU-4027

A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use our secret weapon to eliminate the battleships. Each of the battleships can be marked a value of endurance. For every attack of our secret weapon, it could decrease the endurance of a consecutive part of battleships by make their endurance to the square root of it original value of endurance. During the series of attack of our secret weapon, the commander wants to evaluate the effect of the weapon, so he asks you for help. 
You are asked to answer the queries that the sum of the endurance of a consecutive part of the battleship line.

Notice that the square root operation should be rounded down to integer.

InputThe input contains several test cases, terminated by EOF. 
  For each test case, the first line contains a single integer N, denoting there are N battleships of evil in a line. (1 <= N <= 100000) 
  The second line contains N integers Ei, indicating the endurance value of each battleship from the beginning of the line to the end. You can assume that the sum of all endurance value is less than 2 63
  The next line contains an integer M, denoting the number of actions and queries. (1 <= M <= 100000) 
  For the following M lines, each line contains three integers T, X and Y. The T=0 denoting the action of the secret weapon, which will decrease the endurance value of the battleships between the X-th and Y-th battleship, inclusive. The T=1 denoting the query of the commander which ask for the sum of the endurance value of the battleship between X-th and Y-th, inclusive. 
OutputFor each test case, print the case number at the first line. Then print one line for each query. And remember follow a blank line after each test case.Sample Input

10
1 2 3 4 5 6 7 8 9 10
5
0 1 10
1 1 10
1 1 5
0 5 8
1 4 8

Sample Output

Case #1:
19
7
6

题解:

1.因为对区间的操作是:对每个数进行开根,所以不能像以前加减操作那样,也直接对区间的和进行操作(因为:a+b=sum 不能推出 根号(a)+根号(b) = 根号(a+b))。

2.根据上一点,所以在线段树中,我们只能对一段区间一直更新到每一个元素,然后再push_up求和。但是,如果每个操作都如此,那复杂度得多大?直接用数组维护比线段树更快,那要线段树何用?

3.再回看题目,数据最大为2^64,然后操作是对其开根,我们可以知道对1开根还是1,即当一个值是1时,我们不需要对其进行操作了。推广到一个区间:如果这个区间的所有元素都为1,那么我们也不需要再对这个区间进行操作。那么我们对2^64逐次开根:2^32 2^16 2^8 2^8 2^4 2^2 2^1 1,可以发现,一个数最多只需开7次根就会变成1,操作量很小了。所以:利用线段树进行维护,当一段区间的所有元素都为1,那么我们直接返回;否则更新至叶子结点(深入到每个元素)。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 2e18;
const int MAXN = 1e5+; LL sum[MAXN<<]; void push_up(int u)
{
sum[u] = sum[u*] + sum[u*+];
} void build(int u, int l, int r)
{
if(l==r)
{
scanf("%lld", &sum[u]);
return;
} int mid = (l+r)>>;
build(u*, l, mid);
build(u*+, mid+, r);
push_up(u);
} void attack(int u, int l, int r, int x, int y)
{
if(l==r)
{
sum[u] = (LL)sqrt(sum[u]);
return;
}
//如果这段区域的每个值都为1,那么就无需再执行操作了
if(x<=l && r<=y && sum[u]==1LL*(r-l+)) return; int mid = (l+r)>>;
if(x<=mid) attack(u*, l, mid, x, y);
if(y>=mid+) attack(u*+, mid+, r, x, y);
push_up(u);
} LL query(int u, int l, int r, int x, int y)
{
if(x<=l && r<=y)
return sum[u]; LL ret = ;
int mid = (l+r)>>;
if(x<=mid) ret += query(u*, l, mid, x, y);
if(y>=mid+) ret += query(u*+, mid+, r, x, y);
return ret;
} int main()
{
int n, m, kase = ;
while(scanf("%d", &n)!=EOF)
{
build(, , n);
scanf("%d", &m);
printf("Case #%d:\n", ++kase);
for(int i = ; i<=m; i++)
{
LL op, x, y;
scanf("%lld%lld%lld", &op, &x, &y);
int xx = min(x, y), yy = max(x, y);
if(op==) attack(, , n, xx, yy );
else printf("%lld\n", query(, , n, xx, yy) );
}
printf("\n");
}
}

HDU4027 Can you answer these queries? —— 线段树 区间修改的更多相关文章

  1. HDU 4027 Can you answer these queries? (线段树区间修改查询)

    描述 A lot of battleships of evil are arranged in a line before the battle. Our commander decides to u ...

  2. HDU4027 Can you answer these queries?(线段树 单点修改)

    A lot of battleships of evil are arranged in a line before the battle. Our commander decides to use ...

  3. HDU4027 Can you answer these queries? 线段树

    思路:http://www.cnblogs.com/gufeiyang/p/4182565.html 写写线段树 #include <stdio.h> #include <strin ...

  4. hdu 4027 Can you answer these queries? 线段树区间开根号,区间求和

    Can you answer these queries? Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://acm.hdu.edu.cn/sho ...

  5. HDU-4027-Can you answer these queries?线段树+区间根号+剪枝

    传送门Can you answer these queries? 题意:线段树,只是区间修改变成 把每个点的值开根号: 思路:对[X,Y]的值开根号,由于最大为 263.可以观察到最多开根号7次即为1 ...

  6. Codeforces Round #442 (Div. 2) E Danil and a Part-time Job (dfs序加上一个线段树区间修改查询)

    题意: 给出一个具有N个点的树,现在给出两种操作: 1.get x,表示询问以x作为根的子树中,1的个数. 2.pow x,表示将以x作为根的子树全部翻转(0变1,1变0). 思路:dfs序加上一个线 ...

  7. 题解报告:hdu 1698 Just a Hook(线段树区间修改+lazy懒标记的运用)

    Problem Description In the game of DotA, Pudge’s meat hook is actually the most horrible thing for m ...

  8. poj 2528 线段树区间修改+离散化

    Mayor's posters POJ 2528 传送门 线段树区间修改加离散化 #include <cstdio> #include <iostream> #include ...

  9. E - Just a Hook HDU - 1698 线段树区间修改区间和模版题

    题意  给出一段初始化全为1的区间  后面可以一段一段更改成 1 或 2 或3 问最后整段区间的和是多少 思路:标准线段树区间和模版题 #include<cstdio> #include& ...

随机推荐

  1. spring用到的设计模式

    https://www.cnblogs.com/yuefan/p/3763898.html https://www.cnblogs.com/hwaggLee/p/4510687.html https: ...

  2. HDU-5532//2015ACM/ICPC亚洲区长春站-重现赛-F - Almost Sorted Array/,哈哈,水一把区域赛的题~~

    F - Almost Sorted Array Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  3. UVA 11090 判负圈问题

    题目链接http://vjudge.net/problem/viewProblem.action?id=34650 题目大意: 给定n个点m条边的加权有向图,求平均权值最小的回路.平均权值=路径权值之 ...

  4. ionic 之 基本布局

    目录: 简介 Hybrid vs. Others ionic CSS框架 基本布局 布局模式 定高条块:.bar .bar : 位置 .bar : 嵌入子元素 .bar : 嵌入input 内容:.c ...

  5. CD-----UVa624(01背包+输出路径)

      CD  You have a long drive by car ahead. You have a tape recorder, but unfortunately your best musi ...

  6. codeforces 938F(dp+高维前缀和)

    题意: 给一个长度为n的字符串,定义$k=\floor{log_2 n}$ 一共k轮操作,第i次操作要删除当前字符串恰好长度为$2^{i-1}$的子串 问最后剩余的字符串字典序最小是多少? 分析: 首 ...

  7. loj6165 一道水题(线性筛)

    题目: https://loj.ac/problem/6165 分析: 最直接的想法就是把1~n的所有数分解质因数,然后每个素数的幂取max 我们首先来看看一共可能有哪些素数? 实际上这些素因数恰好就 ...

  8. MySQL事务及Spring事务管理

    事务,是在数据库中用于保证数据正确性的一种机制,涉及到很多概念以及不同的情况,这里做一个总结 相关概念 事务四特性(ACID) 原子性(Atomicity,或称不可分割性):要么全部完成或者全部不完成 ...

  9. react 使用 eslint 的三种代码检查方案总结,多了解点--让代码更完美....

    1.介绍 ESLint 是一个可扩展,每条规则独立,被设计为完全可配置的lint工具. 可以用来检测代码,避免低级错误 可以用来规范代码的开发风格,统一代码习惯. 2.为什么使用 ESLint ? 统 ...

  10. 【python】urllib2

    urllib2.urlopen(url[, data][, timeout]) 请求url,获得请求数据,url参数可以是个String,也可以是个Request参数 没有data参数时为GET请求, ...