Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925
题目中的式子很符合扩展欧拉定理的样子。(如果你还不知扩展欧拉定理,戳)。对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1.
另外,本题中好像必须要用快速乘的样子...否则无法通过...。
$Code$
#include<cstdio>
#include<algorithm> using namespace std;
const int lim=; int T,p;
int phi[lim]; void init_phi()
{
phi[]=;
for(int i=;i<=lim;i++) phi[i]=i;
for(int i=;i<=lim;i++)
if(phi[i]==i)
for(int j=i;j<=lim;j+=i)
phi[j]=phi[j]/i*(i-);
} int mul(int a,int b,int mo)
{
int ans=;
while(b)
{
if(b&) ans=(ans%mo+a%mo)%mo;
b>>=;
a=a%mo*%mo;
}
return ans;
} int ksm(int a,int b,int mo)
{
int ans=;
while(b)
{
if(b&) ans=mul(ans,a,mo)%mo;
b>>=;
a=mul(a,a,mo)%mo;
}
return ans;
} int work(int mod)
{
if(mod==) return ;
return ksm(,work(phi[mod])+phi[mod],mod);
} int main()
{
init_phi();
scanf("%d",&T);
while(T--)
{
scanf("%d",&p);
printf("%d\n",work(p));
}
return ;
}
Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925的更多相关文章
- 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]
题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...
- 【bzoj3884】上帝与集合的正确用法 扩展欧拉定理
题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...
- luogu P4139 上帝与集合的正确用法(扩展欧拉定理)
本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...
- Luogu P4139 上帝与集合的正确用法
题目链接:Click here Solution: 这道题就考你会不会扩展欧拉定理,根据扩展欧拉定理可知 \[ a^b \equiv a^{(b\,mod\,\varphi(p))+\varphi(p ...
- BZOJ.3884.上帝与集合的正确用法(扩展欧拉定理)
\(Description\) 给定p, \(Solution\) 欧拉定理:\(若(a,p)=1\),则\(a^b\equiv a^{b\%\varphi(p)}(mod\ p)\). 扩展欧拉定理 ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- BZOJ 3884: 上帝与集合的正确用法 扩展欧拉定理 + 快速幂
Code: #include<bits/stdc++.h> #define maxn 10000004 #define ll long long using namespace std; ...
- BZOJ3884题解上帝与集合的正确用法--扩展欧拉定理
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3884 分析 扩展欧拉定理裸题 欧拉定理及证明: 如果\((a,m)=1\),则\(a^{ ...
- 洛谷 P4139 上帝与集合的正确用法 解题报告
P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...
随机推荐
- HTML5面试题-b
感谢分享 面试有几点需要注意: 面试题目: 根据你的等级和职位变化,入门级到专家级:范围↑.深度↑.方向↑. 题目类型: 技术视野.项目细节.理论知识型题,算法题,开放性题,案例题. 进行追问: 可以 ...
- 使用外部 toolchain 编译 openwrt
默认编译 openwrt 时会先编译一套 toolchain. 这个步骤耗时较长. 使用外部 toolchain 可以多个 project 共用一套 toolchain , 而且也不重再编译它了. 省 ...
- linux进程间通信消息队列:msgsnd: Invalid argument
今天写了个消息队列的小测试程序结果send端程序总是出现:msgsnd: Invalid argument,搞了半个小时也没搞明白,后来查资料发现我将(st_msg_buf.msg_type = 0; ...
- 项目Beta冲刺(团队7/7)
项目Beta冲刺(团队7/7) 团队名称: 云打印 作业要求: 项目Beta冲刺(团队) 作业目标: 完成项目Beta版本 团队队员 队员学号 队员姓名 个人博客地址 备注 221600412 陈宇 ...
- Android 返回键的处理
多网友不明确怎样在Android平台上捕获Back键的事件.Back键是手机上的后退键,一般的软件不捕获相关信息可能导致你的程序被切换到后台.而回到桌面的尴尬情况,在Android上有两种方法来获取该 ...
- vscode中检测代码中的空白行并去除的方法【转】
按下ctrl+h键进行正则匹配:^\s*(?=\r?$)\n 然后直接替换,再看代码发现空行已经不见了.
- Scrapy爬虫报错:ModuleNotFoundError: No module named 'win32api'
运行 scrapy crawl douban_spider 出现报错: 解决办法:安装pywin32,下载适配安装的Python版本(64位,Python3.6) 下载地址: https://sour ...
- ES6 对象的解构赋值
对象的解构赋值 解构不仅可以用于数组,还可以用于对象. let {foo,bar} = {foo:"aaa",bar:"bbb"}; console.log(f ...
- 利用Swoole实现PHP+websocket直播,即使通讯
websocket Websocket只是一个网络通信协议,就像 http.ftp等都是网络通信的协议一样:相对于HTTP这种非持久的协议来说,Websocket是一个持久化网络通信的协议: WebS ...
- 第六届蓝桥杯C++B组省赛
1.奖券数目 2.星系炸弹 3.三羊献瑞 4.格子中输出 5.九数组分数 6.加法变乘法 7.牌型种数 8.移动距离 9.垒骰子 10.生命之树 1.奖券数目 奖券数目有些人很迷信数字,比如带“4”的 ...