递归(Recursion)
递归是一种非常常用的算法,分为“递”和“归”两个步骤。满足递归算法有三个条件:1.一个问题,可以分解为子问题;2.该问题,与分解后的子问题,解决思路一致;3.存在终止条件。案例演示:假设有n个台阶,每次可以跨1个台阶,或者2个台阶。问:走完这n个台阶共有多少中走法?
解答思路:根据第一步的走法,可以分为两类
1.第一步走1个台阶
2.第一步走2个台阶
3.则n个台阶的走法,等于第一步先走1个台阶后,n-1个台阶的走法;加上第一步先走2个台阶后,n-2个台阶的走法
4.用递推公式表示:f(n)=f(n-1)+f(n-2)
5.终止条件:如果最后剩下1个台阶,则只有1种走法:if(n==1) return1;如果最后剩下2个台阶,则有2中走法:if(n==2) return 2
代码:
/**
* 递归求解:
* 假设有n个台阶,每次可以跨1个台阶,或者2个台阶。请问走完n个台阶共有多少种走法?
*
* 思路:
* 1.根据第一步走法,分为两类:
* 1.1.第一步走1个台阶
* 1.2.第一步走2个台阶
* 1.3.则n个台阶的走法,等于第一步先走1个台阶后,n-1个台阶的走法;加上先走2个台阶后,n-2个台阶的走法
* 1.4.用公式表示:f(n)=f(n-1)+f(n-2)
* 1.5.终止条件:
* 1.5.1.如果最后剩下1个台阶,则只有1中走法:if(n==1) return 1
* 1.5.2.如果最后剩下2个台阶,则有两种走法:if(n==2) return 2
*/
public static int stepsNum(int n){
if(n==1) return 1;
if(n==2) return 2; return stepsNum(n-1)+stepsNum(n-2);
}
递归(Recursion)的更多相关文章
- Atitit 循环(loop), 递归(recursion), 遍历(traversal), 迭代(iterate).
Atitit 循环(loop), 递归(recursion), 遍历(traversal), 迭代(iterate). 1.1. 循环算是最基础的概念, 凡是重复执行一段代码, 都可以称之为循环. ...
- 循环(loop), 递归(recursion), 遍历(traversal), 迭代(iterate)的区别
表示“重复”这个含义的词有很多, 比如循环(loop), 递归(recursion), 遍历(traversal), 迭代(iterate). 循环算是最基础的概念, 凡是重复执行一段代码, 都可以称 ...
- 003_循环(loop), 递归(recursion), 遍历(traversal), 迭代(iterate)的区别
表示“重复”这个含义的词有很多, 比如循环(loop), 递归(recursion), 遍历(traversal), 迭代(iterate). 循环算是最基础的概念, 凡是重复执行一段代码, 都可以称 ...
- 算法与数据结构基础 - 递归(Recursion)
递归基础 递归(Recursion)是常见常用的算法,是DFS.分治法.回溯.二叉树遍历等方法的基础,典型的应用递归的问题有求阶乘.汉诺塔.斐波那契数列等,可视化过程. 应用递归算法一般分三步,一是定 ...
- 数据结构与算法--递归(recursion)
递归的概念 简单的说: 递归就是方法自己调用自己,每次调用时传入不同的变量.递归有助于编程者解决复杂的问题,同时可以让代码变得简洁. 递归调用机制 我列举两个小案例,来帮助大家理解递归 1.打印问题 ...
- 【2.0 递归 Recursion 01】
[介绍] Java的一个方法可以调用它自己,Java和所有编程语言都可以支持这种情况,我们把它叫做递归Recursion 递归方法是一种调用自身的方法 那么使用递归方法是是怎么样的呢,让我们看看下面这 ...
- 【3.0 递归 Recursion 02】
[递归:阶乘] 1.寻找基本情况 对于阶乘而言,最基本的情况就是0!和1!,二者的结果都是1 我们不妨现在方法中写下这个情况,帮助我们跳出递归 if(i<=1){ return 1 ; } 接下 ...
- 《javascript高级程序设计》第七章 递归recursion
7.1 递归7.2 闭包 7.2.1 闭包与变量 7.2.2 关于this 对象 7.2.3 内存泄漏 7.3 模仿块级作用域7.4 私有变量 7.4.1 静态私有变量 7.4.2 模块模式 7.4. ...
- java 递归(Recursion)
现在要求输出一个给定目录中的全部文件的路径. 本程序肯定只能依靠递归的操作完成,因为在一个给定的路径下有可能还是文件夹,那么如果是文件夹的话则肯定要继续列出,重复判断. 递归:程序调用自身的编程技巧 ...
- 【数据结构与算法Python版学习笔记】递归(Recursion)——优化问题与策略
分治策略:解决问题的典型策略,分而治之 将问题分为若干更小规模的部分 通过解决每一个小规模部分问题,并将结果汇总得到原问题的解 递归算法与分治策略 递归三定律 体现了分支策略 应用相当广泛 排序 查找 ...
随机推荐
- C#连接数据库 增删改查
- PHP中include路径修改
1.__FILE__ __FILE__ always equals to the real path of a php script regardless whether it's included. ...
- JDK提供的几种常用的锁
可重入互斥锁: Lock lock = new ReentrantLock() lock.lock(); ... lock.unlock(); 信号量: Semaphore semaphore = n ...
- Messaging Patterns for Event-Driven Microservices
Messaging Patterns for Event-Driven Microservices https://content.pivotal.io/blog/messaging-patterns ...
- because joins aren’t as important.
“MongoDB wasn’t designed in a lab. We built MongoDB from our own experiences building large-scale, h ...
- top load average
负载均值 等待运行的进程数
- 无线网络中的MAC协议(1)
前文我们对传统的有线网络的MAC协议进行了分析,接下来我们在对无线网络的MAC也进行一个详细的介绍.那么无线网络中的MAC工作方式是如何的呢?无线局域网(WLAN)中MAC所对应的标准为IEEE 80 ...
- bootstrap的学习注意点
1.bootstrop里面所有的内容都需要用一个container 容器包裹起来: 2.一屏二屏什么的,是通过id 与href实现的: 3.下拉与菜单之类的都有固定的代码: 4.需要修改相关属性的话, ...
- AjaxControlToolkit没有通过WebResource.axd加载css导致ajaxToolkit:TabPanel无法显示正确的样式
https://stackoverflow.com/questions/3318092/what-is-webresource-axd WebResource.axd provides access ...
- 通过ODC方法改善软件测试:3个案例研究
正交缺陷分类法(ODC)是一种用于分析软件缺陷的归类方法.它可以结合软件开发过程的一系列数据分析技术,为测试组织提供了一个强大的针对开发过程和软件产品的评估方法.在本篇文章中,会列举三个案例研究来说明 ...