Description

\(n(n\leq10^5)\)个点构成的有向图,有\(m(m\leq10^5)\)条连通信息,信息有三种:

  • 1 u v w,表示存在一条边权为\(w\)的有向边\((u,v)\);
  • 2 u L R w,表示\(\forall v\in[L,R]\),存在一条边权为\(w\)的有向边\((u,v)\);
  • 3 u L R w,表示\(\forall v\in[L,R]\),存在一条边权为\(w\)的有向边\((v,u)\)。

其中\(w\leq10^9\)。求点\(s\)到每个点的最短路,不存在输出\(-1\)。

Solution

线段树优化建图。

建立两棵线段树,其上点的点权分别表示“到达这个区间内所有点的最小花费”和“到达这个区间内任意一个点的最小花费”。



第一棵线段树上,由于花费\(v_{[L,R]}\)能够到达\([L,R]\)中所有点,当然也包含\([L,mid]\)和\([mid+1,R]\),所以父节点向子节点连0边;第二棵线段树上,由于花费\(v_{[L,R]}\)能够到达\([L,R]\)中的一个点,这个点当然也包含在其父节点中,所以子节点向父节点连0边。

如果不做感性理解的话,两棵线段树上的点分别用于连和被连,连向第一棵树上的\([L,R]\)就等价于连向\([L,R]\)中的每一个点,被第二棵树上的\([L,R]\)连就等价于被\([L,R]\)中的每一个点连。

由于每一条信息最多建立\(O(logn)\)条边,所以总边数是\(O(mlogn+4n)\)。

建完图后直接跑一遍单源最短路就好啦。

Code

//Legacy
#include <cstdio>
#include <cstring>
#include <queue>
typedef long long lint;
inline char gc()
{
static char now[1<<16],*s,*t;
if(s==t) {t=(s=now)+fread(now,1,1<<16,stdin); if(s==t) return EOF;}
return *s++;
}
inline int read()
{
int x=0; char ch=gc();
while(ch<'0'||'9'<ch) ch=gc();
while('0'<=ch&&ch<='9') x=x*10+ch-'0',ch=gc();
return x;
}
inline int min(int x,int y) {return x<y?x:y;}
const int N=1e5+10;
int n,m,s;
const int N1=3e5+110;
int cnt,rt1,rt2,ch[N1][2];
int h[N1],edCnt;
struct edge{int v,w,nxt;} ed[N*20];
inline void edAdd(int u,int v,int w)
{
edCnt++; ed[edCnt].v=v,ed[edCnt].w=w;
ed[edCnt].nxt=h[u],h[u]=edCnt;
}
void bldTr1(int &p,int L0,int R0)
{
if(L0==R0) {p=L0; return;}
p=++cnt;
int mid=L0+R0>>1;
bldTr1(ch[p][0],L0,mid);
bldTr1(ch[p][1],mid+1,R0);
edAdd(p,ch[p][0],0),edAdd(p,ch[p][1],0);
}
void bldTr2(int &p,int L0,int R0)
{
if(L0==R0) {p=L0; return;}
p=++cnt;
int mid=L0+R0>>1;
bldTr2(ch[p][0],L0,mid);
bldTr2(ch[p][1],mid+1,R0);
edAdd(ch[p][0],p,0),edAdd(ch[p][1],p,0);
}
int optL,optR;
void add(int p,int L0,int R0,int u,int w,int type)
{
if(optL<=L0&&R0<=optR)
{
if(type==2) edAdd(u,p,w); else edAdd(p,u,w);
return;
}
int mid=L0+R0>>1;
if(optL<=mid) add(ch[p][0],L0,mid,u,w,type);
if(mid<optR) add(ch[p][1],mid+1,R0,u,w,type);
}
const lint INF=0x3F3F3F3F3F3F3F3F;
lint dst[N1];
std::queue<int> Q;
void SPFA(int s)
{
memset(dst,0x3F,sizeof dst);
dst[s]=0; Q.push(s);
while(!Q.empty())
{
int u=Q.front(); Q.pop();
for(int i=h[u];i;i=ed[i].nxt)
{
int v=ed[i].v,w=ed[i].w;
if(dst[u]+w<dst[v]) dst[v]=dst[u]+w,Q.push(v);
}
}
}
int main()
{
n=read(),m=read(),s=read();
cnt=n;
bldTr1(rt1,1,n); bldTr2(rt2,1,n);
while(m--)
{
int opt=read(),u,v,w;
if(opt==1)
{
u=read(),v=read(),w=read();
edAdd(u,v,w); continue;
}
u=read(); optL=read(),optR=read(); w=read();
add(opt==2?rt1:rt2,1,n,u,w,opt);
}
SPFA(s);
for(int i=1;i<=n;i++) printf("%lld ",dst[i]<INF?dst[i]:-1);
puts("");
return 0;
}

Codeforces787D - Legacy的更多相关文章

  1. GeoIP Legacy City数据库安装说明

    Here is a brief outline of the steps needed to install GeoIP Legacy City on Linux/Unix. The installa ...

  2. BIOS设置之UEFI/Legacy BIOS切换图文详解

    近几年出现的电脑其中相当一部分都配置了UEFI BIOS,不过大多都默认以Legacy BIOS方式启动.而Win8正式上市后, 所有预装Win8(或Win8.1)的电脑都配置了UEFI BIOS并且 ...

  3. GPT vs MBR 分区 ,,, Legacy BIOS vs UEFI BIOS

    MBR与GPT两种磁盘分区格式的区别 http://itoedr.blog.163.com/blog/static/120284297201378114053240 GPT Partition Tab ...

  4. Neo4j 两种索引Legacy Index与Schema Index区别

    Legacy Indexes 在Neo4j 2.0版本之前,Legacy index被称作indexes.这个索引是通过外部图存储在外的Lucene实现,允许“节点”和“联系”以key:value键值 ...

  5. How to configure Veritas NetBackup (tm) to write Unified and Legacy log files to a different directory

    Problem DOCUMENTATION: How to configure Veritas NetBackup (tm) to write Unified and Legacy log files ...

  6. [论文笔记] Legacy Application Migration to the Cloud: Practicability and Methodology (SERVICES, 2012)

    Quang Hieu Vu, Rasool Asal: Legacy Application Migration to the Cloud: Practicability and Methodolog ...

  7. 安装win7或win8系统时UEFI和Legacy模式的设置

    很多新型号的笔记本或台式机主板都开始支持UEFI模式,比起原来的Legacy启动减少了BIOS自检,加快平台启动,如下图所示Legacy,UEFI启动过程: 安装系统,建议选择Legacy模式,在UE ...

  8. win7 64 + Ubuntu 14.04.1 64双系统安装,详解UEFI ~ GPT和legacy ~ MBR区别

    win7 64 + Ubuntu 14.04.1 64双系统安装 背景:我的笔记本之前的系统是window 7 64 + Ubuntu 14.04.1,用UEFI引导系统.安装过程是先装的win7,再 ...

  9. Legacy安装win7和Ubuntu14.04双系统

    Legacy安装win7和Ubuntu14.04双系统 安装环境 Legacy启动模式(传统引导) 笔记本已安装win7 硬盘启动顺序为: U盘 硬盘 光驱 安装方法 制作U盘启动盘 在Ubuntu官 ...

随机推荐

  1. 我的CentOS6.5下及windows7下 安装composer与Yii2的过程

    用yii2以来,安装composer老是不成功,所以一直在windows下的php里,用直接解压的方法运行yii2. 后来越来越多的场合,需要用composer,终于下决心,要在Linux下搞掂它! ...

  2. hdu 3555 Bomb 炸弹(数位DP,入门)

    题意: 给一个数字n,求从1~n中有多少个数是含有49的,比如49,149,1490等都是含49的. 思路: 2^64也顶多是十进制的20多位,那么按十进制位来分析更简单.如果能计算k位十进制数中分别 ...

  3. 最完整的台达PLC培训教程(沈阳工大)学习笔记1

    1) 可编程控制器的应用1 开关量逻辑控制:电动机启动与停止2 运动控制:对步进电动机或伺服电动机的单轴或多轴系统实现位置控制3 过程控制:对温度.压力.流量等连续变化的模拟量进行闭环控制4 数据处理 ...

  4. java常考小程序

    private static void nineNineMulitTable(){ /** * 9*9乘法表 */ for (int i = 1,j = 1; j <= 9; i++) { Sy ...

  5. 在Phonegap下实现oAuth认证

    原文:http://www.kuqin.com/mobile/20120719/322873.html 前段时间做过两次关于Phonegap的现场交流会议分享.基本上把Phonegap的一些特性和大家 ...

  6. iOS dateformatter设置GMT格式时间--iOS开发系列---项目中成长的知识四

    今天在项目中开始接手客户端的签名这个模块,签名这个会在项目结束过后再单独写一下自己的心得! 今天讲讲在签名的过程中我们需要向服务器传送一个Date值,格式要求是格林威治时间,也就是GMT时间! 格式要 ...

  7. tableview 删除cell

    正如在以前的帖子说,但是我在转到故事版(StoryBoard)教程之前,我有另外一个问题来回答. 我如何从UITableView删除一行呢? 当人们构建简单的表视图引用程序后,这是另一个常见的​​问题 ...

  8. PLAYGROUND 可视化

    PLAYGROUND 可视化 由 王巍 (@ONEVCAT) 发布于 2015/09/23 在程序界,很多小伙伴都会对研究排序算法情有独钟,并且试图将排序执行的过程可视化,以便让大家更清晰直观地了解算 ...

  9. shell基础笔记1

    ---恢复内容开始--- 1 test命令中不能使用浮点小数值,如:    A=1.444444:[    $A -gt 1  ] 2 test命令中的>或<必须转义,否则shell会把它 ...

  10. sha1、base64、ase加密

    <!DOCTYPE html><html><head><title>sha1.base64.ase加密</title><meta ch ...