POJ 1927 Area in Triangle(计算几何)
博客原文地址:http://blog.csdn.net/xuechelingxiao/article/details/40707691
题目大意:
给你一个三角形的三边边长,给你一跟绳子的长度,将绳子放在三角形里围起来的面积最大是多少。
解题思路:
当然能够想到当绳子的长度十分长的时候,绳子能围城的最大面积就是三角形的面积。
当然还能够想到的是当绳子的长度比較短,小于三角形的内接圆的长度时,绳子能围城的面积就是绳子能围成的圆的面积。
那么剩下要计算的就是当绳子长度小于三角形周长而且大于三角形内接圆的时候。
这样的情况下,显然会是如图所看到的的情况。
那么这样的情况下的面积怎么计算呢?
如图:
两个三角形是相似的,所以红色绳子所围成部分的面积就是大三角形的面积减去小三角形的的面积再加上小三角形内切圆的面积,也就是代码中
ans = S-S*t*t+Pi*rr*rr; 的意义。至于小三角形内切圆的半径。则是用小三角形与大三角形相似算出来的比例求得的。
我感觉说的挺具体的,具体的看代码吧。
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <vector>
#include <cmath>
#include <stdio.h>
#include <stdlib.h>
#include <cstring>
#include <iostream>
#include <limits.h>
#include <algorithm>
#define LL long long
//#define LL long long
#define max(a,b) ((a)>(b)?(a):(b))
#define min(a,b) ((a)<(b)?(a):(b))
#define max3(a, b, c) (a>b?max(a, c):max(b, c))
#define min3(a, b, c) (a<b?min(a, c):min(b, c))
#define max4(a, b, c, d) max(max(a, b), max(c, d))
#define min4(a, b, c, d) min(min(a, b), min(c, d))
#define Read() freopen("data.in", "r", stdin);
#define Write() freopen("data.out", "w", stdout); const double Pi = acos(-1.0);;
const double Ee = 2.718281828459045235360;
const int INF = 0x3f3f3f3f;
const LL INFF = 0x3f3f3f3f3f3f3f3fLL;
const double eps = 1e-8;
const int MOD = 1000000009; const int dx4[] = {-1, 0, 1, 0};
const int dy4[] = { 0, 1, 0, -1};
const int dx8[] = {-1, 0, 1, 0, -1, -1, 1, 1};
const int dy8[] = {0 , 1, 0, -1, -1, 1, -1, 1};
const int dxhorse[] = {-2, -2, -1, -1, 1, 1, 2, 2};
const int dyhorse[] = {1 , -1, 2, -2, 2, -2, 1, -1}; using namespace std; struct Point {
double x, y;
} P[20010], m; int dcmp(double x) {
return x < -eps ? -1 : x > eps;
} int main()
{
double a, b, c, d;
int icase = 1;
while(~scanf("%lf%lf%lf%lf", &a, &b, &c, &d)) {
if(dcmp(a)==0 && dcmp(b)==0 && dcmp(c)==0 && dcmp(d)==0) {
break;
}
double L = a+b+c;
double cosA = (b*b+c*c-a*a)/(2*b*c);
double S = 0.5*b*c*(sqrt(1-cosA*cosA));
double r = S*2/L;
double ans;
if(d > L) {
ans = S;
}
else if(2*Pi*r >= d) {
ans = d*d/(4*Pi);
}
else {
double t = (L-d)/(L-2*Pi*r);
double rr = r*t;
ans = S-S*t*t+Pi*rr*rr;
}
printf("Case %d: %.2lf\n", icase++, ans);
} return 0;
} /*test case*/
/* */
POJ 1927 Area in Triangle(计算几何)的更多相关文章
- POJ 1927 Area in Triangle
Area in Triangle Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1674 Accepted: 821 D ...
- POJ 1927 Area in Triangle 题解
link Description 给出三角形三边长,给出绳长,问绳在三角形内能围成的最大面积.保证绳长 \(\le\) 三角形周长. Solution 首先我们得知道,三角形的内切圆半径就是三角形面积 ...
- 2018.07.04 POJ 1654 Area(简单计算几何)
Area Time Limit: 1000MS Memory Limit: 10000K Description You are going to compute the area of a spec ...
- hdu 1451 Area in Triangle(计算几何 三角形)
Given a triangle field and a rope of a certain length (Figure-1), you are required to use the rope t ...
- poj 1654 Area 多边形面积
/* poj 1654 Area 多边形面积 题目意思很简单,但是1000000的point开不了 */ #include<stdio.h> #include<math.h> ...
- poj 1265 Area 面积+多边形内点数
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5861 Accepted: 2612 Description ...
- POJ 1265 Area POJ 2954 Triangle Pick定理
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5227 Accepted: 2342 Description ...
- 2018.07.04 POJ 1265 Area(计算几何)
Area Time Limit: 1000MS Memory Limit: 10000K Description Being well known for its highly innovative ...
- POJ 1654 Area 计算几何
#include<stdio.h> #include<string.h> #include<iostream> #include<math.h> usi ...
随机推荐
- matlab ()的用法
经常见到标识符+(),用法比如阵列Y().函数f()..... 时机到了,会总结一下.
- 十二.GUI
tkinter模块(tkinter是一个跨平台的PythonGUI工具包): #Tkinter是一个跨平台的Python GUI工具包 import tkinter top=tkinter.Tk() ...
- STM32--TIM定时器时钟分割(疑难)
不太明白 (1) TIM_Perscaler来设置预分频系数: (2) TIM_ClockDivision来设置时钟分割(时钟分频因子): (3) TIM_C ...
- sqlserver建dblink
--建立连接exec sp_addlinkedserver'ITSV' ,'' , 'SQLOLEDB' ,'IP地址不加端口' exec sp_addlinkedsrvlogin'ITSV' ,'f ...
- Laya 利用JS进行反射
Laya 利用JS进行反射 @author ixenos 当需要配表调用函数时,可以利用js的eval来调用 1.在配置js中写下: function callAsFunc(funcName){ ev ...
- [luoguP2801] 教主的魔法(二分 + 分块)
传送门 以为对于这类问题线段树都能解决,分块比线段树菜,结果培训完才知道线段树是一种特殊的分块方法,有的分块的题线段树不能做,看来分块还是有必要学的. 对于这个题,先分块,然后另开一个数组对于每个块内 ...
- [POJ1797] Heavy Transportation(最大生成树 || 最短路变形)
传送门 1.最大生成树 可以求出最大生成树,其中权值最小的边即为答案. 2.最短路 只需改变spfa里面的松弛操作就可以求出答案. ——代码 #include <queue> #inclu ...
- vue移动端头像上传,不大于50K
先看效果: 稍加说明一下:第一张图是user.vue,第二张图是点击头像出现的系统自带上传文件格式(安卓和IOS不一样),第三张图是cropper组件(我单独设置的),第四张图是上传完成的user.v ...
- MITM Proxy环境搭建
MITM_Proxy环境搭建 环境要求 系统环境要求: Ubuntu 14.04 x64,CentOS 7 x64以上版本系统(建议使用xubuntu 14.04 x64,稳定硬件要求低) Pytho ...
- 从 modCount 看 java集合 fail-fast 机制
一.背景 在常见的Java的非线程安全集合类中(如HashMap.ArrayList),经常可以在一些修改结构的操作(如Add)中看到实例变量 modCount++ ,来统计集合的修改次数. 从注释也 ...