今天我要讲的这个算法是最近邻算法(K-NearestNeighbor),简称 KNN 算法。

1.一个例子

有一句老话叫作 “物以类聚、人以群分”。想象我们在一个特别的社区里,一条清澈的小河从社区中心流过,小河左侧环境优美,住着一群有钱人,家家户户都是别墅;而小河的另一侧,住着大片贫民,用茅草和纸板搭建的临时住所密密麻麻的。这时有一个新的住户从外面搬进了这个社区,他住在了小河的左侧,此时社区里就传开了消息:“我们这又搬来了一户有钱人家。” 可是谁都不认识他,也看不到他的银行账户,为什么就认定他是有钱人呢?那是因为他跟有钱人住在一起了。故事到了这里,也就说明了最
近邻算法的思路:“你跟谁住得近,你就跟谁是同一类”。

2.算法原理

有了思路,我们再来看看原理,KNN 算法是如何处理的。用一句话来解释 KNN 算法原理,那就是找到K 个与新数据最近的样本,取样本中最多的一个类别作为新数据的类别。在前面的例子中,找到和新搬进来的一户人家住的距离最近的 K 户人家,看看 K 户人家中是有钱人多还是穷人多,取多的那个类别作为新搬来这户的类别。所以,显然他住在富人区,那附近就会有更多的富人。
这里面我们提到了一个距离最近,关于距离该怎么计算呢?最常见的一个计算方法就是欧式距离,即两点之间的连线,如果放在地图上就是两个房子的直线距离。当然除了欧式距离,还有很多距离计算的方式,比如曼哈顿距离、切比雪夫距离等。

3.算法的优缺点

如此简单的算法都有哪些优缺点呢?下面我结合使用场景进行分析。
优点

  • 简单易实现: 刚把 KNN 算法介绍完了,是不是很简单?从上面的内容可以看出来,KNN 算法最后实际上并没有抽象出任何模型,而是把全部的数据集直接当作模型本身,当一条新数据来了之后跟数据集里面的每一条数据进行对比。
    所以可以看到 KNN 算法的一些优点,首当其冲的就是这个算法简单,简单到都不需要进行什么训练
    了,只要把样本数据整理好了,就结束了,来一条新数据就可以进行预测了。
  • 对于边界不规则的数据效果较好: 可以想到,我们最终的预测是把未知数据作为中心点,然后画一个圈,使得圈里有 K 个数据,所以对于边界不规则的数据,要比线性的分类器效果更好。因为线性分类器可以理解成画一条线来分类,不规则的数据则很难找到一条线将其分成左右两边。
    缺点
  • 只适合小数据集: 正是因为这个算法太简单,每次预测新数据都需要使用全部的数据集,所以如果数据集太大,就会消耗非常长的时间,占用非常大的存储空间。
  • 数据不平衡效果不好: 如果数据集中的数据不平衡,有的类别数据特别多,有的类别数据特别少,那么这种方法就会失效了,因为特别多的数据最后在投票的时候会更有竞争优势。
  • 必须要做数据标准化: 由于使用距离来进行计算,如果数据量纲不同,数值较大的字段影响就会变大,所以需要对数据进行标准化,比如都转换到 0-1 的区间。
    不适合特征维度太多的数据: 由于我们只能处理小数据集,如果数据的维度太多,那么样本在每个维度上的分布就很少。比如我们只有三个样本,每个样本只有一个维度,这比每个样本有三个维度特征要明显很多。

3.关于 K 的选取

K 值的选取会影响到模型的效果。在极端情况下,如果 K 取 1,由于富人区人均面积都很大,家里可能是别墅加后花园,富人与富人房子的距离相对较远,那个恰好住在河边的人可能跟河对面的一户贫民家最近,那么这个新人就会被判定为贫民。
如果 K 取值与数据集的大小一样,那么也可想而知,由于贫民的人数户数都远远多于富人,那么所有新进来的人,不管他住哪里都会被判定为贫民。这种情况下,最终结果就是整个样本中占多数的分类的结果,这个模型也就没有什么作用了。
用我们前面学过的内容来看,当 K 越小的时候容易过拟合,因为结果的判断与某一个点强相关。而 K越大的时候容易欠拟合,因为要考虑所有样本的情况,那就等于什么都不考虑。
对于 K 的取值,一种显而易见的办法就是从 1 开始不断地尝试,查看准确率。随着 K 的增加,一般情况下准确率会先变大后变小,然后选取效果最好的那个 K 值就好了。当然,关于 K 最好使用奇数,因为偶数在投票的时候就困难了,如果两个类别的投票数量是一样的,那就没办法抉择了,只能随机选一个。
所以选取一个合适的 K 值也是 KNN 算法在实现时候的一个难点,需要根据经验和效果去进行尝试。

4.代码实现

接下来,我们尝试借助代码来使用 KNN 算法。今天的动手环节可能要多一点,因为还涉及一些周边的东西,所以我会把前后的代码都写上,包括数据集获取、数据的处理以及训练和预测等环节,在后面一些算法的动手环节就不需要再去重复了。

from sklearn import datasets #sklearn的数据集
from sklearn.neighbors import KNeighborsClassifier #sklearn模块的KNN类
import numpy as np #矩阵运算库numpy
np.random.seed(0)

在这里我们使用一个叫作鸢尾花数据集的数据,这个数据集里面有 150 条数据,共有 3 个类别,即
Setosa 鸢尾花、Versicolour 鸢尾花和 Virginica 鸢尾花,每个类别有 50 条数据,每条数据有 4 个维
度,分别记录了鸢尾花的花萼长度、花萼宽度、花瓣长度和花瓣宽度。

iris=datasets.load_iris()
iris_x=iris.data
iris_y=iris.target
randomarr= np.random.permutation(len(iris_x))
iris_x_train = iris_x[randomarr[:-10]]
iris_y_train = iris_y[randomarr[:-10]]
iris_x_test = iris_x[randomarr[-10:]]
iris_y_test = iris_y[randomarr[-10:]]
knn = KNeighborsClassifier()
knn.fit(iris_x_train, iris_y_train)
iris_y_predict = knn.predict(iris_x_test)
probility=knn.predict_proba(iris_x_test)
neighborpoint=knn.kneighbors([iris_x_test[-1]],5)
score=knn.score(iris_x_test,iris_y_test,sample_weight=None)
print('iris_y_predict = ')
print(iris_y_predict)
#输出原始测试数据集的正确标签,以方便对比
print('iris_y_test = ')
print(iris_y_test)
#输出准确率计算结果
print('Accuracy:',score)

下面是输出的结果:
可以看到,该模型的准确率为 0.9,其中第二个数据预测错误了。
经过上面的一个动手尝试,我们已经成功地实践了 KNN 算法,并使用它对鸢尾花数据进行了分类计
算,不知道你是不是有点小激动?当然,关于里面的很多细节这里都没有涉及,希望大家接下来能够更加深入地去探索。
总结
这一小节,我们开始真正走进了一个算法之中,去研究算法的奥秘。当然,我期望以一种简单易学的方式向你介绍算法的原理,并去掉了那些让人头疼的计算公式。在这一节里,我介绍了 KNN 分类算法,从一个例子开始,然后引入了它的原理,并希望你能了解它的优缺点,对于后面的算法,我也会沿用这种方式去介绍。最后,我还写出了一段简单的代码,如果你已经在电脑上安装了 Python,那你可以复制并直接运行它,当然我希望你能够自己去敲一遍代码,这样也能够加深你的印象。

KNN算法:近朱者赤,近墨者黑的更多相关文章

  1. KNN算法理解

    一.算法概述 1.kNN算法又称为k近邻分类(k-nearest neighbor classification)算法. 最简单平庸的分类器或许是那种死记硬背式的分类器,记住全部的训练数据,对于新的数 ...

  2. KNN算法的理解

    一.算法 1.kNN算法又称为k近邻分类(k-nearest neighbor classification)算法. 最简单平庸的分类器或许是那种死记硬背式的分类器,记住全部的训练数据.对于新的数据则 ...

  3. day-9 sklearn库和python自带库实现最近邻KNN算法

    K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...

  4. 【机器学习】机器学习入门01 - kNN算法

    0. 写在前面 近日加入了一个机器学习的学习小组,每周按照学习计划学习一个机器学习的小专题.笔者恰好近来计划深入学习Python,刚刚熟悉了其基本的语法知识(主要是与C系语言的差别),决定以此作为对P ...

  5. 机器学习 KNN算法原理

    K近邻(K-nearst neighbors,KNN)是一种基本的机器学习算法,所谓k近邻,就是k个最近的邻居的意思,说的是每个样本都可以用它最接近的k个邻居来代表.比如:判断一个人的人品,只需要观察 ...

  6. KNN算法之集美大学

     在本篇文章中,我即将以在集美大学收集到的一些数据集为基础,使用KNN算法进行一系列的操作 一.KNN算法 首先,什么是KNN算法呢,这得用到老祖宗说的一句话"近朱者赤近墨者黑", ...

  7. 【Machine Learning】KNN算法虹膜图片识别

    K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...

  8. KNN算法

    1.算法讲解 KNN算法是一个最基本.最简单的有监督算法,基本思路就是给定一个样本,先通过距离计算,得到这个样本最近的topK个样本,然后根据这topK个样本的标签,投票决定给定样本的标签: 训练过程 ...

  9. kNN算法python实现和简单数字识别

    kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单 ...

  10. 什么是 kNN 算法?

    学习 machine learning 的最低要求是什么?  我发觉要求可以很低,甚至初中程度已经可以.  首先要学习一点 Python 编程,譬如这两本小孩子用的书:[1][2]便可.   数学方面 ...

随机推荐

  1. pytorch中使用vutils对多张图像进行拼接 (import torchvision.utils as vutils)

    1.png 2.png 在pytorch中使用torchvision的vutils函数实现对多张图片的拼接.具体操作就是将上面的两张图片,1.png和2.png的多张图片进行拼接形成一张图片,拼接后的 ...

  2. 为什么大部分的 PHP 程序员转不了 Go 语言?

    大家好,我是码农先森. 树挪死,人挪活,这个需求我做不了,换个人吧.大家都有过这种经历吧,放在编程语言身上就是 PHP 不行了,赶紧转 Go 语言吧.那转 Go 语言就真的行了?那可不见得,我个人认为 ...

  3. 一次生产环境mysql迁移操作(二)mysql空间释放(碎片整理)

    一次生产环境mysql迁移操作(一)数据归档 一次生产环境mysql迁移操作(二)mysql空间释放(碎片整理) 上文中增加了定时归档,现在一些大表磁盘空间一直不释放,导致数据库文件越来越大.现在介绍 ...

  4. 学习redis问题记录

    2024年5月25日 倒腾了很长时间 突然发现的问题 ide提示改为toList() 我顺便就改过去了 但是实际业务中redis序列化会产生无法反序列化的问题 造成缓存挂壁 业务直接G collect ...

  5. armbian指令大全

    修复缺失内容 使用以下命令修复安装时缺失的内容: sudo apt --fix-broken install 使用 aptitude 安装软件 aptitude 是 Debian 及其衍生系统中功能强 ...

  6. freertos学习笔记(十一)直接任务通知

    直接任务通知 起源 队列和信号量是实时操作系统的典型功能,而FreeRTOS提供的直接任务通知比队列和信号量更小且速度更快(快45%) 开发人员应优先使用量身定制的功能:直接任务通知.消息缓冲区和流缓 ...

  7. 以Top-Down思维去解决问题——递归

    目录 递归的基础 递归的底层实现(不是重点) 递归的应用场景 编程中 两种解决问题的思维 自下而上(Bottom-Up) 自上而下(Top-Down) 自上而下的思考过程--求和案例 台阶问题 案例 ...

  8. 6.2 XXE和XML利用

    pikaqu靶场xml数据传输测试-有回显,玩法,协议,引入 1.构造payload 写文件 <?xml version="1.0" encoding="UTF-8 ...

  9. [C#基础1/21] C#概述

    Notion原笔记 1. C# 简介 1.1 C# 定义 C# 在继承 C 和 C++ 强大功能的同时去掉了一些它们的复杂特性,使其成为 C 语言家族中的一种高效强大的编程语言 1.2 C# 用途 用 ...

  10. RS485与ModbusRTU

    前言 大家好!我是付工. 每次听到别人说RS485通信协议,就很想去纠正他. 今天跟大家聊聊关于RS485的那些事. 接口标准 首先明确一点,RS485不是通信协议,而是一种接口标准,它还有2个兄弟: ...