最近在学习使用阿里云的推荐引擎时,在使用的过程中用到很多推荐算法,所以就研究了一下,这里主要介绍一种推荐算法—基于物品的协同过滤算法。
ItemCF算法不是根据物品内容的属性计算物品之间的相似度,而是通过分析用户的行为记录来计算用户的相似度。该算法认为物品A和物品B相似的依据是因为喜欢物品A的用户也喜欢物品B。
基于物品的协同过滤算法实现步骤:
1、计算物品之间的相似度
2、根据物品的相似度和用户的历史行为记录给用户生成推荐列表
下面我们一起来看一下这两部是如何实现的:
一、计算物品之间的相似度
通过查询一下资料,ItemCF的物品相似度计算模型如下:

公式中|N(i)|表示喜欢物品i的用户数,|N(j)|表示喜欢物品j的用户数, |N(i)∩N(j)|表示同时喜欢物品i和物品j的用户数。从上面的公式我们可以看出物品i和物品j相似是因为他们共同别很多的用户喜欢,相似度越高表示同时喜欢他们的用户数越多。
下面举例讲解一下相似度的计算过程:
假设用户A对物品a,b,d有过评价,用户B对物品b,c,e有过评价,如下图:

A : a b d
B : b c e
C : c d
D : b c d
E : a d
根据上面用户的行为构建:用户——物品倒排表:例如:物品a有用户A和E做过评价。
a : A E
b : A B D
c : B C D
d : A C D E
e : B
根据上面的倒排表我们可以构建一个相似度矩阵:

图 1.1 计算物品的相似度
图中最左边的是用户输入的用户行为记录,每一行代表用户感兴趣的物品集合,然后对每个物品集合,我们将里面的物品两两加一,得到一个矩阵。最终将这些矩阵进行相加得到上面的C矩阵。其中Ci记录了同时喜欢物品i和j的用户数。这样我们就得到了物品之间的相似度矩阵W。

二、根据物品的相似度和用户的历史行为记录给用户生成推荐列表
ItemCF通过下面的公式计算用户u对一个物品j的兴趣:


这里的N(u)代表用户喜欢的物品的集合,S(j,k)是和物品j最相似的的k个物品的集合,wij是物品j和i的相似度,r_ui代表用户u对物品i的兴趣。该公式的含义是,和用户历史上最感兴趣的物品月相似的物品,越有可能在用户的推荐列表中获得比较高的排名。
下面是查阅资料找到的一些优化方法:
(1)、用户活跃度对物品相似度的影响
即认为活跃用户对物品相似度的贡献应该小于不活跃的用户,所以增加一个IUF(Inverse User Frequence)参数来修正物品相似度的计算公式:

用这种相似度计算的ItemCF被记为ItemCF-IUF。
ItemCF-IUF在准确率和召回率两个指标上和ItemCF相近,但它明显提高了推荐结果的覆盖率,降低了推荐结果的流行度,从这个意义上说,ItemCF-IUF确实改进了ItemCF的综合性能。

(2)、物品相似度的归一化
Karypis在研究中发现如果将ItemCF的相似度矩阵按最大值归一化,可以提高推荐的准确度。其研究表明,如果已经得到了物品相似度矩阵w,那么可用如下公式得到归一化之后的相似度矩阵w':

最终结果表明,归一化的好处不仅仅在于增加推荐的准确度,它还可以提高推荐的覆盖率和多样性。用这种相似度计算的ItemCF被记为ItemCF-Norm。

基于物品的协同过滤算法(ItemCF)的更多相关文章

  1. Spark 基于物品的协同过滤算法实现

    J由于 Spark MLlib 中协同过滤算法只提供了基于模型的协同过滤算法,在网上也没有找到有很好的实现,所以尝试自己实现基于物品的协同过滤算法(使用余弦相似度距离) 算法介绍 基于物品的协同过滤算 ...

  2. 推荐召回--基于物品的协同过滤:ItemCF

    目录 1. 前言 2. 原理&计算&改进 3. 总结 1. 前言 说完基于用户的协同过滤后,趁热打铁,我们来说说基于物品的协同过滤:"看了又看","买了又 ...

  3. 基于物品的协同过滤(ItemCF)

  4. 转】Mahout分步式程序开发 基于物品的协同过滤ItemCF

    原博文出自于: http://blog.fens.me/hadoop-mahout-mapreduce-itemcf/ 感谢! Posted: Oct 14, 2013 Tags: Hadoopite ...

  5. Mahout分步式程序开发 基于物品的协同过滤ItemCF

    http://blog.fens.me/hadoop-mahout-mapreduce-itemcf/ Hadoop家族系列文章,主要介绍Hadoop家族产品,常用的项目包括Hadoop, Hive, ...

  6. 基于物品的协同过滤ItemCF的mapreduce实现

    文章的UML图比较好看..... 原文链接:www.cnblogs.com/anny-1980/articles/3519555.html 基于物品的协同过滤ItemCF 数据集字段: 1.  Use ...

  7. 基于物品的协同过滤推荐算法——读“Item-Based Collaborative Filtering Recommendation Algorithms” .

    ligh@local-host$ ssh-copy-id -i ~/.ssh/id_rsa.pub root@192.168.0.3 基于物品的协同过滤推荐算法--读"Item-Based ...

  8. 基于物品的协同过滤item-CF 之电影推荐 python

    推荐算法有基于协同的Collaboration Filtering:包括 user Based和item Based:基于内容 : Content Based 协同过滤包括基于物品的协同过滤和基于用户 ...

  9. Music Recommendation System with User-based and Item-based Collaborative Filtering Technique(使用基于用户及基于物品的协同过滤技术的音乐推荐系统)【更新】

    摘要: 大数据催生了互联网,电子商务,也导致了信息过载.信息过载的问题可以由推荐系统来解决.推荐系统可以提供选择新产品(电影,音乐等)的建议.这篇论文介绍了一个音乐推荐系统,它会根据用户的历史行为和口 ...

随机推荐

  1. 统计 SQL Server中的 Job 情况

    SELECT J.name 作业名称, P.step_id'步骤编号',P.step_name'步骤名称',p.SubSystem '步骤类型',P.command'执行命令', CASE freq_ ...

  2. 基于多用户的Oracle数据泵导入导出数据

    登陆SqlPlus: SqlPlus sys/syspwd@MyOrcl AS sysdba 其中:syspwd:sys的登陆密码:MyOrcl:所创建的数据库服务名. 创建数据泵: create o ...

  3. Spring知识点小结汇总

    Spring部分 1.谈谈你对spring IOC和DI的理解,它们有什么区别? IoC Inverse of Control 反转控制的概念,就是将原本在程序中手动创建UserService对象的控 ...

  4. 【js】深拷贝和浅拷贝区别,以及实现深拷贝的方式

    一.区别:简单点来说,就是假设B复制了A,当修改A时,看B是否会发生变化,如果B也跟着变了,说明这是浅拷贝,如果B没变,那就是深拷贝. 此篇文章中也会简单阐述到栈堆,基本数据类型与引用数据类型,因为这 ...

  5. 竞赛题解 - NOIP2018 赛道修建

    \(\mathcal {NOIP2018}\) 赛道修建 - 竞赛题解 额--考试的时候大概猜到正解,但是时间不够了,不敢写,就写了骗分QwQ 现在把坑填好了~ 题目 (Copy from 洛谷) 题 ...

  6. ubuntu8.04下mysql更改用户和密码

    1.最近由于系统原因重装了mysql,但是发现安装过程中没有提示设置密码. 2.修改用户名和密码步骤 A.service mysql stop    #停止mysql服务 B.sudo vim /et ...

  7. zabbix 3.x 监控日志文件

    1.启用zabbix主动模式 在zabbix agent端,修改/etc/zabbix/zabbix_agentd.conf ServerActive=服务端IP Hostname=tspnginx0 ...

  8. Python提高篇

    Python提高篇 1.模块 1)模块定义 模块就是py文件,可以是你自己写的,也可以是python当中自带的工具,当你在某个py文件下想要引用其他模块的功能,就需要你把你把该py文件导入. 2)导入 ...

  9. [翻译]Hystrix wiki–Home

    注:本文并非是精确的文档翻译,而是根据自己理解的整理,有些内容可能由于理解偏差翻译有误,有些内容由于是显而易见的,并没有翻译,而是略去了.本文更多是学习过程的产出,请尽量参考原官方文档. 什么是Hys ...

  10. Vagrant 总结

    引言   本文将讨论Vagrant基础应用,高级应用,基于Vagrant 的虚拟机优化,Vagrant的优势及区别等四部分   参考资料: [阿里云教程中心]Docker学习总结之Docker与Vag ...