n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈。问最终栈中元素个数的期望是多少。

首先容易想到用概率算期望,p[i][j][k]表示已加入i个数,1有j个,总长为k的概率。(显然栈中一定是先一些0再是1)。

考虑优化,容易想到f[i][j]表示已加入i个数,1有j个时,栈中的期望元素个数。

讨论下一个放入的数是0还是1,直接转移即可。

每次转移是状态是f[i]=(f[k]+1)*p[k][i],其中k是能到达i的所有状态,p[k][i]是i由k转移到的概率(注意不是k转移到i的概率)。

同时维护P和f即可,注意j=0时要特判。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=;
const double eps=1e-;
int n;
double ans,p[N][N],f[N][N];
double Abs(double x){ return (x<) ? -x : x; } int main(){
scanf("%d",&n); p[][]=;
rep(i,,n-){
p[i+][]+=p[i][]/; p[i+][]+=p[i][]/;
rep(j,,n-) p[i+][j+]+=p[i][j]/,p[i+][j-]+=p[i][j]/;
if (p[i+][]>eps) f[i+][]+=(f[i][]+)*p[i][]/(*p[i+][]);
if (p[i+][]>eps) f[i+][]+=(f[i][]+)*p[i][]/(*p[i+][]);
rep(j,,n-)
f[i+][j+]+=(f[i][j]+)*((Abs(p[i+][j+])<eps)?:p[i][j]/(*p[i+][j+])),
f[i+][j-]+=(f[i][j]-)*((Abs(p[i+][j-])<eps)?:p[i][j]/(*p[i+][j-]));
}
rep(i,,n) ans+=f[n][i]*p[n][i]; printf("%.3lf\n",ans);
return ;
}

[LOJ6191][CodeM]配对游戏(概率期望DP)的更多相关文章

  1. 【loj6191】「美团 CodeM 复赛」配对游戏 概率期望dp

    题目描述 n次向一个栈中加入0或1中随机1个,如果一次加入0时栈顶元素为1,则将这两个元素弹栈.问最终栈中元素个数的期望是多少. 输入 一行一个正整数 n . 输出 一行一个实数,表示期望剩下的人数, ...

  2. 【bzoj4832】[Lydsy2017年4月月赛]抵制克苏恩 概率期望dp

    题目描述 你分别有a.b.c个血量为1.2.3的奴隶主,假设英雄血量无限,问:如果对面下出一个K点攻击力的克苏恩,你的英雄期望会受到到多少伤害. 输入 输入包含多局游戏. 第一行包含一个整数 T (T ...

  3. 【BZOJ-1419】Red is good 概率期望DP

    1419: Red is good Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 660  Solved: 257[Submit][Status][Di ...

  4. Codeforces - 1264C - Beautiful Mirrors with queries - 概率期望dp

    一道挺难的概率期望dp,花了很长时间才学会div2的E怎么做,但这道题是另一种设法. https://codeforces.com/contest/1264/problem/C 要设为 \(dp_i\ ...

  5. 概率期望dp

    对于概率dp,我一直都弄得不是特别明白,虽然以前也有为了考试去突击过,但是终究还是掌握得不是很好,所以决定再去学习一遍,把重要的东西记录下来. 1.hdu4405 Description 在一个 \( ...

  6. Codeforces 908 D.New Year and Arbitrary Arrangement (概率&期望DP)

    题目链接:New Year and Arbitrary Arrangement 题意: 有一个ab字符串,初始为空. 用Pa/(Pa+Pb)的概率在末尾添加字母a,有 Pb/(Pa+Pb)的概率在末尾 ...

  7. [BZOJ4832]抵制克苏恩(概率期望DP)

    方法一:倒推,最常规的期望DP.f[i][a][b][c]表示还要再攻击k次,目前三种随从个数分别为a,b,c的期望攻击英雄次数,直接转移即可. #include<cstdio> #inc ...

  8. LightOJ 1030 Discovering Gold (概率/期望DP)

    题目链接:LightOJ - 1030 Description You are in a cave, a long cave! The cave can be represented by a \(1 ...

  9. luoguP3239 [HNOI2015]亚瑟王 概率期望DP

    当初怎么想的来着.....又忘了...... 首先,总期望 = 每张卡片的期望之和 求期望,只要我们求出每张卡片被用掉的概率即可 如果直接上状态$f[i][j]$表示在第$i$轮中,第$j$张牌发动的 ...

随机推荐

  1. 大聊Python----SocketServer

    什么是SocketServer? SocketServer的最主要的作用是实现并发处理,也就是可以多个用户同时上传和下载文件. socketserver模块简化了编写网络服务器的任务. sockets ...

  2. JS的prototype和__proto__

    一.prototype和__proto__的概念 prototype是函数的一个属性(每个函数都有一 个prototype属性),这个属性是一个指针,指向一个对象.它 是显示修改对象的原型的属性. _ ...

  3. hdu 1016 Prime Ring Problem (素数环)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1016 题目大意:输入一个n,环从一开始到n,相邻两个数相加为素数. #include <iost ...

  4. arduino 用电位器调节LED闪烁频率

    int dianwei; int led = 13; void setup() {  // put your setup code here, to run once:  Serial.begin(9 ...

  5. Java案例之随机验证码功能实现

    实现的功能比较简单,就是随机产生了四个字符然后输出.效果图如下,下面我会详细说一下实现这个功能用到了那些知识点,并且会把 这些知识点详细的介绍出来.哈哈 ,大神勿喷,对于初学Java的人帮助应该蛮大的 ...

  6. 树莓派开启smb

    1.安装smb apt-get install samba samba-common-bin 2.修改/etc/samba/smb.conf配置 设置使用系统用户登入 增加smb访问文件夹 [shar ...

  7. 【转】CVE-2010-4258 漏洞分析

    一. 漏洞简介 CVE-2010-4258这个漏洞很有意思,主要思路是如果通过clone函数去创建进程,并且带有CLONE_CHILD_CLEARTID标志,那么进程在退出的时候,可以造成内核任意地址 ...

  8. python基础===Excel处理库openpyxl

    openpyxl是一个第三方库,可以处理xlsx格式的Excel文件. 安装: pip install openpyxl 对如下excel进行读取操作,如图: from openpyxl import ...

  9. python mysql插入数据遇到的错误

    1.数据插入的时候报错:not enough arguments for format string,大概意思就是说没有足够的参数格式化字符串. 我的数据库插入方法是这样的 def add_data( ...

  10. C基础 工程中常用的排序

    引言 - 从最简单的插入排序开始 很久很久以前, 也许都曾学过那些常用的排序算法. 那时候觉得计算机算法还是有点像数学. 可是脑海里常思考同类问题, 那有什么用呢(屌丝实践派对装逼学院派的深情鄙视). ...