BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)
【题目链接】 http://www.lydsy.com/JudgeOnline/problem.php?id=4589
【题目大意】
有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种
【题解】
后手必胜,则sg为0,那么就是求n个m以内的数xor为0的情况有几种,
首先筛出素数,保存素数的个数数组,利用FWT计算c[i^j]=a[i]*b[j],
计算n次的结果逆向变化回来就是最终的sg个数数组,
在计算n次c[i]=a[i]*b[i]的过程中,等价于计算c[i]=a[i]^n,
这里我们可以用快速幂优化一个log。
【代码】
#include <cstdio>
#include <algorithm>
using namespace std;
typedef long long LL;
const int N=100000;
const LL mod=1e9+7;
LL a[N],u;
int p[N],n,m;
void FWT(LL*a,int n){
for(int d=1;d<n;d<<=1)for(int m=d<<1,i=0;i<n;i+=m)for(int j=0;j<d;j++){
LL x=a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%mod,a[i+j+d]=(x-y+mod)%mod;
}
}
void UFWT(LL*a,int n){
for(int d=1;d<n;d<<=1)for(int m=d<<1,i=0;i<n;i+=m)for(int j=0;j<d;j++){
LL x=a[i+j],y=a[i+j+d];
a[i+j]=(x+y)%mod*u%mod,a[i+j+d]=(x-y+mod)%mod*u%mod;
}
}
LL pow(LL a,LL b,LL p){LL t=1;for(a%=p;b;b>>=1LL,a=a*a%p)if(b&1LL)t=t*a%p;return t;}
int main(){
for(int i=2;i<=50000;i++)p[i]=1;
for(int i=2;i<=50000;i++)if(p[i]){
for(int j=2;i*j<=50000;j++)p[i*j]=0;
}u=pow(2,mod-2,mod);
while(~scanf("%d%d",&n,&m)){
int len=1;while(len<=m)len<<=1;
for(int i=0;i<len;i++)a[i]=p[i]&(i<=m);
FWT(a,len);
for(int i=0;i<len;i++)a[i]=pow(a[i],n,mod);
UFWT(a,len);
printf("%lld\n",a[0]);
}return 0;
}
BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)的更多相关文章
- bzoj 4589 Hard Nim——FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 一开始异或和为0的话先手必败.有 n 堆,每堆可以填那些数,求最后异或和为0的方案数, ...
- bzoj 4589 Hard Nim —— FWT
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4589 先手必败,是一开始所有石子的异或和为0: 生成函数 (xpri[1] + xpri[2 ...
- BZOJ.4589.Hard Nim(FWT)
题目链接 FWT 题意即,从所有小于\(m\)的质数中,选出\(n\)个数,使它们异或和为\(0\)的方案数. 令\(G(x)=[x是质数]\),其实就是对\(G(x)\)做\(n\)次异或卷积后得到 ...
- BZOJ 4589 Hard Nim ——FWT
[题目分析] 位运算下的卷积问题. FWT直接做. 但还是不太民白,发明者要承担泽任的. [代码] #include <cstdio> #include <cstring> # ...
- bzoj 4589: Hard Nim【线性筛+FWT+快速幂】
T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...
- FWT [BZOJ 4589:Hard Nim]
4589: Hard Nim Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 275 Solved: 152[Submit][Status][Disc ...
- BZOJ 4589 Hard Nim(FWT加速DP)
题目链接 Hard Nim 设$f[i][j]$表示前$i$个数结束后异或和为$j$的方案数 那么$f[i][j] = f[i-1][j$ $\hat{}$ $k]$,满足$k$为不大于$m$的质数 ...
- BZOJ 2326: [HNOI2011]数学作业( 矩阵快速幂 )
BZOJ先剧透了是矩阵乘法...这道题显然可以f(x) = f(x-1)*10t+x ,其中t表示x有多少位. 这个递推式可以变成这样的矩阵...(不会用公式编辑器...), 我们把位数相同的一起处理 ...
- BZOJ.4818.[SDOI2017]序列计数(DP 快速幂)
BZOJ 洛谷 竟然水过了一道SDOI!(虽然就是很水...) 首先暴力DP,\(f[i][j][0/1]\)表示当前是第\(i\)个数,所有数的和模\(P\)为\(j\),有没有出现过质数的方案数. ...
随机推荐
- Java的9种基本数据类型的大小,以及他们的封装类
由于java程序是运行在虚拟机之上的,所以java的基本数据类型的大小是确定的,不会随着操作系统的位数的改变而改变. 在计算机中,存储的是0,1,0,1这样的二进制位,表示为bit,1Byte = 8 ...
- 关于解决coursera视频缓冲问题
关于解决coursera视频缓冲问题 之前使用coursera,不FQ的话,视频根本加载不出来,于是每次都FQ过去看的视频.后来发现可以直接修改hosts就可以了. 以下方法来源知乎的回答(侵删). ...
- Linux进程调度与源码分析(二)——进程生命周期与task_struct进程结构体
1.进程生命周期 Linux操作系统属于多任务操作系统,系统中的每个进程能够分时复用CPU时间片,通过有效的进程调度策略实现多任务并行执行.而进程在被CPU调度运行,等待CPU资源分配以及等待外部事件 ...
- devm_xxx机制
前言 devm是内核提供的基础机制,用于方便驱动开发者所分配资源的自动回收.参考内核文档devres.txt.总的来说,就是驱动开发者只需要调用这类接口分配期望的资源,不用关心释放问题.这些资源的释放 ...
- perl 函数参数传递与返回值(一)
perl 函数参数传递与返回值(一) http://www.cnblogs.com/tobecrazy/archive/2013/06/11/3131887.html
- MHA切换过程:
1.监测master的状态Ping(SELECT) succeeded, waiting until MySQL doesn't respond.. 2.当监控发现master异常时发出warning ...
- H5对安卓WeView开发中的影响
1.body,或者html 高度为100% 会导致下拉直接触发原生的刷新控件,而不是webView滑动到顶部后刷新,以及不会执行onScrollChanged 方法,并且getScrollY 总是返 ...
- BZOJ 4516: [Sdoi2016]生成魔咒——后缀数组、并查集
传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4516 题意 一开始串为空,每次往串后面加一个字符,求本质不同的子串的个数,可以离线.即长度为 ...
- Atom:优雅迷人的编辑神器
对于热爱markdown写作的人来说,Atom同样是一款拥有无穷魅力的写作软件.我不怕它无法满足你的需求,就怕你不给一个机会了解它,那么,这将是一场遗憾的错过. 大学的时候,坊间对那些编程高手有一个令 ...
- socket实现udp与tcp通信-java
1.简单介绍Socket Socket套接字 网络上具有唯一标识的IP地址和端口号组合在一起才能构成唯一能识别的标识符套接字. 通信的两端都有Socket. 网络通信其实就是Socket间的通信. 数 ...