题面

题解

先筛出$<128$的质数,很少,打个表即可

然后钦定一个质数最大,不断替换即可(丢进大根堆里面,然后取出一个,替换在丢进去即可)

具体来说,设一个四元组$[t,x,y,z]$表示当前的总乘积为$t$,$x$为最大的质数,$y$表示为$x$的多少次方,最后一个$z$表示当前能枚举的右界。

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using std::priority_queue;
typedef long long ll; template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} ll N;
int K, p[] = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127};
struct Node { ll t; int x, y, z; };
bool operator < (const Node &a, const Node &b) { return a.t < b.t; }
priority_queue<Node> q; int main () {
read(N), read(K);
for(int i=1;i<=31;i++) {
ll tmp = p[i];
for(int j = 1; tmp <= N; ++j, tmp *= p[i])
q.push((Node){tmp, p[i], j, i - 1});
}
while(K--) {
Node now = q.top(); q.pop();
if(!K) printf("%lld\n", now.t);
else if(now.y > 1)
for(int i = 1; i <= now.z; ++i)
q.push((Node){now.t / now.x * p[i], now.x, now.y - 1, i});
}
return 0;
}

Bzoj 4524 [Cqoi2016]伪光滑数(堆)的更多相关文章

  1. @bzoj - 4524@ [Cqoi2016]伪光滑数

    目录 @description@ @solution@ @version - 1@ @version - 2@ @accepted code@ @version - 1@ @version - 2@ ...

  2. 【BZOJ4524】[Cqoi2016]伪光滑数 堆(模拟搜索)

    [BZOJ4524][Cqoi2016]伪光滑数 Description 若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M ...

  3. 【BZOJ-4524】伪光滑数 堆 + 贪心 (暴力) [可持久化可并堆 + DP]

    4524: [Cqoi2016]伪光滑数 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 183  Solved: 82[Submit][Status] ...

  4. [CQOI2016]伪光滑数

    题目描述 若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M为N-伪 光滑数.现在给出N,求所有整数中,第K大的N-伪光滑数 ...

  5. [bzoj4524] [loj#2047] [Cqoi2016] 伪光滑数

    Description 若一个大于 \(1\) 的整数 \(M\) 的质因数分解有 \(k\) 项,其最大的质因子为 \(Ak\) ,并且满足 \(Ak^K \leq N\) , \(Ak<12 ...

  6. BZOJ4524 CQOI2016伪光滑数(堆)

    对于每个质数求出其作为最大质因子时最多能有几个质因子,开始时将这些ak1~akmaxk扔进堆.考虑构造方案,使得每次取出最大值后,最大质因子.质因子数均与其相同且恰好比它小的数都在堆里.类似暴搜,对于 ...

  7. BZOJ4524 [Cqoi2016]伪光滑数

    BZOJ上的题面很乱,这里有一个题面. 题解: 正解是可持久化可并堆+DP,可惜我不会... 但暴力也可过这道题. 先在不超过N的前提下,在大根堆里加入每个质数的J次方,1<=j, 然后就可以发 ...

  8. 2021.08.01 P4359 伪光滑数(二叉堆)

    2021.08.01 P4359 伪光滑数(二叉堆) [P4359 CQOI2016]伪光滑数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 若一个大于 11 的整数 MM ...

  9. Loj 2047 伪光滑数

    Loj 2047 伪光滑数 正解较复杂,但这道题其实可以通过暴力解决. 预处理出 \(128\) 内的所有质数,把 \(n\) 内的 \(prime[i]^j\) 丢进堆中,再尝试对每个数变形,除一个 ...

随机推荐

  1. 什么叫TLD、gTLD、nTLD、ccTLD、iTLD 以及几者之间的关系

    TLD TLD的全称是Top Level Domain,顶级域名,它是一个因特网域名的最后部分,也就是任何域名的最后一个点后面的字母组成的部分. 最早的顶级域名有:.com(公司和企业)..net(网 ...

  2. vijos 1153 背包+标记

    描述 新一年度的猫狗大战通过SC(星际争霸)这款经典的游戏来较量,野猫和飞狗这对冤家为此已经准备好久了,为了使战争更有难度和戏剧性,双方约定只能选择Terran(人族)并且只能造机枪兵. 比赛开始了, ...

  3. webservice 针对WebService服务,客户端调用时报序列化的最大项数maxItemsInObjectGraph超过65536问题

    今天在使用webservice服务时候,报异常“The InnerException message was 'Maximum number of items that can be serializ ...

  4. SQL SERVER 创建远程数据库链接 mysql oracle sqlserver

    遇到的坑 在连接Oracle时,因为服务器为10g 32位版本,然后在本地安装了32为10g客户端,然后一直报错[7302.7303],后来下载了12c 64位版本,安装成功后,问题解决 原因:mss ...

  5. RelativeLayout相对布局中属性值

    android:layout_above="@id/xxx"  --将控件置于给定ID控件之上 android:layout_below="@id/xxx"  ...

  6. Linux中断(interrupt)子系统之二:arch相关的硬件封装层【转】

    转自:http://blog.csdn.net/droidphone/article/details/7467436 Linux的通用中断子系统的一个设计原则就是把底层的硬件实现尽可能地隐藏起来,使得 ...

  7. linux===linux后台运行和关闭、查看后台任务(转)

    fg.bg.jobs.&.ctrl + z都是跟系统任务有关的,虽然现在基本上不怎么需要用到这些命令,但学会了也是很实用的 一.& 最经常被用到这个用在一个命令的最后,可以把这个命令放 ...

  8. linux中时间精度的获取问题【转】

    转自:http://www.xuebuyuan.com/877633.html 目前项目需要,需要对时间进行基准,基准的精度在微秒.下午老刘给我说不能用do_gettimeofday因为他的精度虽然可 ...

  9. 64_g2

    gettext-libs-0.19.8.1-9.fc26.x86_64.rpm 15-Mar-2017 14:15 305038 gf2x-1.1-9.fc26.i686.rpm 11-Feb-201 ...

  10. selenium WebElement 的属性和方法 属性

    tag_name 标签名,例如 'a'表示<a>元素get_attribute(name) 该元素name 属性的值text 该元素内的文本,例如<span>hello< ...