Bzoj 4524 [Cqoi2016]伪光滑数(堆)
题面
题解
先筛出$<128$的质数,很少,打个表即可
然后钦定一个质数最大,不断替换即可(丢进大根堆里面,然后取出一个,替换在丢进去即可)
具体来说,设一个四元组$[t,x,y,z]$表示当前的总乘积为$t$,$x$为最大的质数,$y$表示为$x$的多少次方,最后一个$z$表示当前能枚举的右界。
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using std::priority_queue;
typedef long long ll;
template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
}
ll N;
int K, p[] = {1, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127};
struct Node { ll t; int x, y, z; };
bool operator < (const Node &a, const Node &b) { return a.t < b.t; }
priority_queue<Node> q;
int main () {
read(N), read(K);
for(int i=1;i<=31;i++) {
ll tmp = p[i];
for(int j = 1; tmp <= N; ++j, tmp *= p[i])
q.push((Node){tmp, p[i], j, i - 1});
}
while(K--) {
Node now = q.top(); q.pop();
if(!K) printf("%lld\n", now.t);
else if(now.y > 1)
for(int i = 1; i <= now.z; ++i)
q.push((Node){now.t / now.x * p[i], now.x, now.y - 1, i});
}
return 0;
}
Bzoj 4524 [Cqoi2016]伪光滑数(堆)的更多相关文章
- @bzoj - 4524@ [Cqoi2016]伪光滑数
目录 @description@ @solution@ @version - 1@ @version - 2@ @accepted code@ @version - 1@ @version - 2@ ...
- 【BZOJ4524】[Cqoi2016]伪光滑数 堆(模拟搜索)
[BZOJ4524][Cqoi2016]伪光滑数 Description 若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M ...
- 【BZOJ-4524】伪光滑数 堆 + 贪心 (暴力) [可持久化可并堆 + DP]
4524: [Cqoi2016]伪光滑数 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 183 Solved: 82[Submit][Status] ...
- [CQOI2016]伪光滑数
题目描述 若一个大于1的整数M的质因数分解有k项,其最大的质因子为Ak,并且满足Ak^K<=N,Ak<128,我们就称整数M为N-伪 光滑数.现在给出N,求所有整数中,第K大的N-伪光滑数 ...
- [bzoj4524] [loj#2047] [Cqoi2016] 伪光滑数
Description 若一个大于 \(1\) 的整数 \(M\) 的质因数分解有 \(k\) 项,其最大的质因子为 \(Ak\) ,并且满足 \(Ak^K \leq N\) , \(Ak<12 ...
- BZOJ4524 CQOI2016伪光滑数(堆)
对于每个质数求出其作为最大质因子时最多能有几个质因子,开始时将这些ak1~akmaxk扔进堆.考虑构造方案,使得每次取出最大值后,最大质因子.质因子数均与其相同且恰好比它小的数都在堆里.类似暴搜,对于 ...
- BZOJ4524 [Cqoi2016]伪光滑数
BZOJ上的题面很乱,这里有一个题面. 题解: 正解是可持久化可并堆+DP,可惜我不会... 但暴力也可过这道题. 先在不超过N的前提下,在大根堆里加入每个质数的J次方,1<=j, 然后就可以发 ...
- 2021.08.01 P4359 伪光滑数(二叉堆)
2021.08.01 P4359 伪光滑数(二叉堆) [P4359 CQOI2016]伪光滑数 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 题意: 若一个大于 11 的整数 MM ...
- Loj 2047 伪光滑数
Loj 2047 伪光滑数 正解较复杂,但这道题其实可以通过暴力解决. 预处理出 \(128\) 内的所有质数,把 \(n\) 内的 \(prime[i]^j\) 丢进堆中,再尝试对每个数变形,除一个 ...
随机推荐
- LightOJ 1062 - Crossed Ladders 基础计算几何
http://www.lightoj.com/volume_showproblem.php?problem=1062 题意:问两条平行边间的距离,给出从同一水平面出发的两条相交线段长,及它们交点到水平 ...
- windows 安装elk日志系统
1.前往https://www.elastic.co官网下载对应的elasticsearch .kibana和logstash他们的版本号一致. 2.elasticsearch 解压后前往bin文件下 ...
- 【BZOJ1879】【SDOI2009】Bill的挑战 [状压DP]
Bill的挑战 Time Limit: 4 Sec Memory Limit: 64 MB[Submit][Status][Discuss] Description Input 第一行:一个整数T, ...
- 省队集训 Day1 残缺的字符串
[题目大意] 双串带通配符匹配. $|S|, |T| \leq 5 * 10^5$ TL: 2s [题解] 参考bzoj 4503 可以设计如下函数 A[i] * B[i] * (A[i] - B[i ...
- 【转载】Lua脚本语法说明(修订)
原文:http://www.cnblogs.com/ly4cn/archive/2006/08/04/467550.html 挑出来几个 .逻辑运算 and, or, not 其中,and 和 or ...
- John's trip(POJ1041+欧拉回路+打印路径)
题目链接:http://poj.org/problem?id=1041 题目: 题意:给你n条街道,m个路口,每次输入以0 0结束,给你的u v t分别表示路口u和v由t这条街道连接,要输出从起点出发 ...
- Mayor's posters(线段树+离散化+区间染色)
题目链接:http://poj.org/problem?id=2528 题目: 题意:将n个区间进行染色(对于同一个区间,后一次染色会覆盖上一次的染色),问最后可见的颜色有多少种. 思路:由于区间长度 ...
- SQL SERVER 创建远程数据库链接 mysql oracle sqlserver
遇到的坑 在连接Oracle时,因为服务器为10g 32位版本,然后在本地安装了32为10g客户端,然后一直报错[7302.7303],后来下载了12c 64位版本,安装成功后,问题解决 原因:mss ...
- 广度优先算法(BFS)与深度优先算法(DFS)
一.广度优先算法BFS(Breadth First Search) 基本实现思想 (1)顶点v入队列. (2)当队列非空时则继续执行,否则算法结束. (3)出队列取得队头顶点v: (4)查找顶点v的所 ...
- mysql之数据库操作进阶(三)
环境信息 数据库:mysql-5.7.20 操作系统:Ubuntu-16.04.3 查询 条件查询 # 使用where关键字 select * from 表名 where 条件 # 比较运算符 > ...