浴谷夏令营例题...讲师讲的很清楚,没看题解代码就自己敲出来了

  f[l][i][j]表示i到j走2^l条边的最短距离,显然有f[l][i][j]=min(f[l][i][j],f[l-1][i][k]+f[l-1][k][j])。

  是否有负环可以用f[l][i][i]是否<0来判,我们从高位往低位贪心,找到走的边数最大的没有负环的图,把最大走的边数+1就必定有负环,也就是答案了。

#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
const int maxn=,inf=1e9;
int n,m,x,y,ans;
int f[][maxn][maxn],g[maxn][maxn],h[maxn][maxn];
inline void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int main()
{
read(n);read(m);int L=(int)ceil(log(n)/log());
for(int i=;i<=n;i++)for(int j=;j<=n;j++)
{
for(int k=;k<=L;k++)f[k][i][j]=(i-j||k)?inf:;
g[i][j]=(i-j)?inf:;
}
for(int i=;i<=m;i++)read(x),read(y),read(f[][x][y]);
for(int l=;l<=L;l++)
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
f[l][i][j]=min(f[l][i][j],f[l-][i][k]+f[l-][k][j]);
int FLAG=;
for(;L>=;L--)
{
for(int i=;i<=n;i++)for(int j=;j<=n;j++)h[i][j]=(i-j)?inf:;
int flag=;
for(int k=;k<=n;k++)
{
for(int i=;i<=n;i++)
{
for(int j=;j<=n;j++)
h[i][j]=min(h[i][j],f[L][i][k]+g[k][j]);
if(h[i][i]<){flag=;FLAG=;break;}
}
if(flag)break;
}
if(flag)continue;
for(int i=;i<=n;i++)for(int j=;j<=n;j++)g[i][j]=h[i][j];
ans+=<<L;
}
printf("%d",FLAG?ans+:);
}

bzoj4773: 负环(倍增floyd)的更多相关文章

  1. BZOJ4773: 负环(倍增Floyd)

    题意 题目链接 Sol 倍增Floyd,妙妙喵 一个很显然的思路(然而我想不到是用\(f[k][i][j]\)表示从\(i\)号点出发,走\(k\)步到\(j\)的最小值 但是这样复杂度是\(O(n^ ...

  2. 【BZOJ4773】负环 倍增Floyd

    [BZOJ4773]负环 Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边 ...

  3. BZOJ4773 负环(floyd+倍增)

    倍增floyd求出经过<=2k条边时两点间最短路,一个点到自身的最短路就是包含该点的最小环.然后倍增找答案即可.注意初始时到自身的最短路设为0,这样求出的最短路就是经过<=2k条边的而不是 ...

  4. bzoj4773 负环 倍增+矩阵

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4773 题解 最小的负环的长度,等价于最小的 \(len\) 使得存在一条从点 \(i\) 到自 ...

  5. BZOJ 4773: 负环 倍增Floyd

    现在看来这道题就非常好理解了. 可以将问题转化为求两点间经过 $k$ 个点的路径最小值,然后枚举剩余的那一个点即可. #include <cstdio> #include <cstr ...

  6. 2018.11.09 bzoj4773: 负环(倍增+floyd)

    传送门 跟上一道题差不多. 考虑如果环上点的个数跟最短路长度有单调性那么可以直接上倍增+floyd. 然而并没有什么单调性. 于是我们最开始给每个点初始化一个长度为0的自环,于是就有单调性了. 代码: ...

  7. bzoj 4773: 负环——倍增

    Description 在忘记考虑负环之后,黎瑟的算法又出错了.对于边带权的有向图 G = (V, E),请找出一个点数最小的环,使得 环上的边权和为负数.保证图中不包含重边和自环. Input 第1 ...

  8. 4.28 省选模拟赛 负环 倍增 矩阵乘法 dp

    容易想到 这个环一定是简单环. 考虑如果是复杂环 那么显然对于其中的第一个简单环来说 要么其权值为负 如果为正没必要走一圈 走一部分即可. 对于前者 显然可以找到更小的 对于第二部分是递归定义的. 综 ...

  9. bzoj4773: 负环

    题解: 网上还有一种spfa+深度限制的算法 https://www.cnblogs.com/BearChild/p/6624302.html 是不加队列优化的spfa,我觉得复杂度上限是bellma ...

随机推荐

  1. 「日常训练&知识学习」单调栈

    这几天的知识学习比较多,因为时间不够了.加油吧,为了梦想. 这里写几条简单的单调栈作为题解记录,因为单调栈的用法很简单,可是想到并转化成用这个需要一些题目的积淀. 相关博客参见:https://blo ...

  2. Java开发工程师(Web方向) - 01.Java Web开发入门 - 第6章.蜂巢

    第6章--蜂巢 蜂巢简介 网站开发完,就需要测试.部署.在服务器上运行. 网易蜂巢: 采用Docker容器化技术的云计算平台 https://c.163.com 容器管理:容器可被视作为云主机的服务器 ...

  3. Python中一些糟糕的语法!你遇到过吗?还知道那些?

    Python是一门语法优雅,功能强大,开发效率高,应用领域广泛的解释性语言. 其有非常多的优点,但是也并不是完美的,除了大家都知道的执行速度不够快,Python2和Python3的兼容问题,以及GIL ...

  4. redis 在java中的使用

    1.首先下载jar包放到你的工程中 2.练习 package com.jianyuan.redisTest; import java.util.Iterator;import java.util.Li ...

  5. 关于java使用double还是float

    眼睛一亮在论坛上发现一枚很有价值的评论赶紧抄下来... 记住java一定要用double,更鼓不变,就算数值不大也要用double.了解java虚拟机的底层会知道,float放在内存中其实是当作dou ...

  6. Spark mlib的本地向量

    Spark mlib的本地向量有两种: DenseVctor :稠密向量 其创建方式 Vector.dense(数据) SparseVector :稀疏向量 其创建方式有两种: 方法一:Vector. ...

  7. NOIP2012 普及组真题 4.13校模拟

    考试状态: 我今天抽签看了洛谷的… 这我能怂???凶中带吉,我怕考试??我!不!怕! 看着整个机房的男同学们,我明白我是不会触发我的忌了.很好,开刷. A. [NOIP2012普及组真题] 质因数分解 ...

  8. Django基本目录详解

    1.app是自己建立的一个存放app的文件夹,因为项目大了之后会存在很多app(pycharm生成app方法 Tools-Run manage.py Task-输入startapp app名称) 2. ...

  9. HADOOP docker(七):hive权限管理

    1. hive权限简介1.1 hive中的用户与组1.2 使用场景1.3 权限模型1.3 hive的超级用户2. 授权管理2.1 开启权限管理2.2 实现超级用户2.3 实现hiveserver2用户 ...

  10. 小程序的picker的range 是一个 Object Array (对象数组)

    小程序的picker的range 是一个 Object Array (对象数组) 数据: array: [{'id':1,'name':'Android'},{'id':2,'name':'IOS'} ...