51NOD 1934:受限制的排列——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1934
听说会笛卡尔树的人这题都秒了啊……
参考:https://blog.csdn.net/vectorxj/article/details/79475244
首先题得看懂(我就是看题解才看懂题面的……),它告诉你对于i,我们有最大的(li,ri)使得这个区间内pi最小。
于是最小的数一定是(1,n)区间内的,设为pos,那么我们只需要递归处理(1,pos-1)和(pos+1,n)的即可。
当然我们的情况数要乘以给左区间的数的情况数。
中途如果出现各种无解情况直接返回0即可。
注意读入优化!
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef long long ll;
struct fastio{
static const int bs=;
char c(){
static char buf[bs],*S=buf,*T=buf;
if(S==T){
T=(S=buf)+fread(buf,,bs,stdin);
if(S==T)return EOF;
}
return *S++;
}
int operator()(){
int X=;char ch=c();
if(ch==EOF)return ;
while(!isdigit(ch))ch=c();
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=c();
return X;
}
}read;
const int N=1e6+;
const int p=1e9+;
inline int qpow(int k,int n){
int res=;
while(n){
if(n&)res=(ll)res*k%p;
k=(ll)k*k%p;n>>=;
}
return res;
}
map<int,int>mp[N];
int n,cnt,l[N],r[N];
int jc[N],inv[N];
void init(int k){
jc[]=;
for(int i=;i<=k;i++)jc[i]=(ll)jc[i-]*i%p;
inv[k]=qpow(jc[k],p-);
for(int i=k-;i;i--)inv[i]=(ll)inv[i+]*(i+)%p;
inv[]=;
}
inline int C(int a,int b){
return (ll)jc[a]*inv[b]%p*inv[a-b]%p;
}
int work(int L,int R){
if(L>R)return ;
int pos=mp[L][R];
if(L==pos&&pos==R)return ;
if(pos<L||R<pos)return ;
return (ll)C(R-L,pos-L)*work(L,pos-)%p*work(pos+,R)%p;
}
int main(){
init(1e6);
while(n=read()){
for(int i=;i<=n;i++)mp[i].clear();
for(int i=;i<=n;i++)l[i]=read();
for(int i=;i<=n;i++)r[i]=read();
bool flag=;
for(int i=;i<=n;i++){
if(mp[l[i]].count(r[i]))flag=;
mp[l[i]][r[i]]=i;
}
if(!flag)printf("Case #%d: 0\n",++cnt);
else printf("Case #%d: %d\n",++cnt,work(,n));
}
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
51NOD 1934:受限制的排列——题解的更多相关文章
- 51nod 1934 受限制的排列——笛卡尔树
题目:http://www.51nod.com/Challenge/Problem.html#!#problemId=1934 根据给出的信息,可以递归地把笛卡尔树建出来.一个点只应该有 0/1/2 ...
- 【51nod】1934 受限制的排列
题解 这题还要判无解真是难受-- 我们发现我们肯定能确定1的位置,1左右的两个区间是同理的可以确定出最小值的位置 我们把区间最小值看成给一个区间+1,构建出笛卡尔树,就求出了每一次取最小值和最小值左右 ...
- HAOI2006 (洛谷P2341)受欢迎的牛 题解
HAOI2006 (洛谷P2341)受欢迎的牛 题解 题目描述 友情链接原题 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之 ...
- 51nod 1812 树的双直径 题解【树形DP】【贪心】
老了-稍微麻烦一点的树形DP都想不到了. 题目描述 给定一棵树,边权是整数 \(c_i\) ,找出两条不相交的链(没有公共点),使得链长的乘积最大(链长定义为这条链上所有边的权值之和,如果这条链只有 ...
- #P2341 [HAOI2006]受欢迎的牛 题解
题目描述 每头奶牛都梦想成为牛棚里的明星.被所有奶牛喜欢的奶牛就是一头明星奶牛.所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的.奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C ...
- 51NOD 1709:复杂度分析——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1709 (我什么时候看到二进制贡献才能条件反射想到按位处理贡献呢……) 参 ...
- 51NOD 1559:车和矩形——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1559 波雷卡普有一个n×m,大小的棋盘,上面有k个车.他又放了q个矩形在 ...
- 51NOD 2026:Gcd and Lcm——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=2026 参考及推导:https://www.cnblogs.com/ivo ...
- 51NOD 1594:Gcd and Phi——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1594 参考及详细推导:http://www.cnblogs.com/ri ...
随机推荐
- hdu1422重温世界杯(动态规划,最长子序列)
重温世界杯 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submi ...
- hdu1596find the safest road(floyd)
find the safest road Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- java实现网页截图
使用工具 java+selenium+phantomjs /chromedriver /firefox 1.分别是 phantomjs插件 google截图插件 和 firefox火狐浏览器截图插件2 ...
- android AVD创建
参数详解:AVD name:是要填写的虚拟机名称,这个自己随便取名就行了,要纯英文和数字组成Device:这里是要选择模拟的设备,一般选择3.2*QVGA(ADP2)(320*480: mdpi)这个 ...
- 卸载CDH5.7
CDH5.7卸载1.记录用户数据目录2.关闭所有服务2.1在CM中,选择某个集群,然后停止集群.2.2逐个关闭CDH中的服务3.删除parcels4.删除集群5.卸载Cloudera manager ...
- Python练习—函数
1.编写函数f(n),实现输入n的值,求出n的阶乘.然后调用此函数计算1! +2!+3!+……10!的结果,输出到屏幕上. def f(n): count = 1; for i in range(1, ...
- 百度编辑器ueditor的图片地址修正
我用的百度编辑器为1.4.2的,相对于现在这个时间来说是比较新的.之前去的1.3版的,后来更新到1.4之后出现路径问题.因为今天晚上出现特别奇怪的问题,所以特地又整了一遍,发现这玩意还是得自己弄通了好 ...
- Python学习 - 入门篇1
前言 学习渠道:慕课网:Python入门 记录原因:人总归要向记忆低头[微笑再见.gif] 记录目标:形成简洁的知识点查阅手册 变量和数据类型 变量 赋值 在Python中,可以把任意数据类型赋值给变 ...
- lintcode-11-二叉查找树中搜索区间
二叉查找树中搜索区间 给定两个值 k1 和 k2(k1 < k2)和一个二叉查找树的根节点.找到树中所有值在 k1 到 k2 范围内的节点.即打印所有x (k1 <= x <= k2 ...
- LintCode-70.二叉树的层次遍历 II
二叉树的层次遍历 II 给出一棵二叉树,返回其节点值从底向上的层次序遍历(按从叶节点所在层到根节点所在的层遍历,然后逐层从左往右遍历) 样例 给出一棵二叉树 {3,9,20,#,#,15,7}, 按照 ...