上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题。

为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1。也就是说,生成图像和真实图像经过判别器的时候,要共享同一套变量,所以TensorFlow引入了变量共享机制。

变量共享主要涉及到两个函数: tf.get_variable(<name>, <shape>, <initializer>) 和 tf.variable_scope(<scope_name>)。

先来看第一个函数: tf.get_variable。

tf.get_variable 和tf.Variable不同的一点是,前者拥有一个变量检查机制,会检测已经存在的变量是否设置为共享变量,如果已经存在的变量没有设置为共享变量,TensorFlow 运行到第二个拥有相同名字的变量的时候,就会报错。

例如如下代码:

def my_image_filter(input_images):
conv1_weights = tf.Variable(tf.random_normal([5, 5, 32, 32]),
name="conv1_weights")
conv1_biases = tf.Variable(tf.zeros([32]), name="conv1_biases")
conv1 = tf.nn.conv2d(input_images, conv1_weights,
strides=[1, 1, 1, 1], padding='SAME')
return tf.nn.relu(conv1 + conv1_biases)

有两个变量(Variables)conv1_weighs, conv1_biases和一个操作(Op)conv1,如果你直接调用两次,不会出什么问题,但是会生成两套变量;

# First call creates one set of 2 variables.
result1 = my_image_filter(image1)
# Another set of 2 variables is created in the second call.
result2 = my_image_filter(image2)

如果把 tf.Variable 改成 tf.get_variable,直接调用两次,就会出问题了:

result1 = my_image_filter(image1)
result2 = my_image_filter(image2)
# Raises ValueError(... conv1/weights already exists ...)

为了解决这个问题,TensorFlow 又提出了 tf.variable_scope 函数:它的主要作用是,在一个作用域 scope 内共享一些变量,可以有如下几种用法:

1)

with tf.variable_scope("image_filters") as scope:
result1 = my_image_filter(image1)
scope.reuse_variables() # or
#tf.get_variable_scope().reuse_variables()
result2 = my_image_filter(image2)

需要注意的是:最好不要设置 reuse 标识为 False,只在需要的时候设置 reuse 标识为 True。

2)

with tf.variable_scope("image_filters1") as scope1:
result1 = my_image_filter(image1)
with tf.variable_scope(scope1, reuse = True)
result2 = my_image_filter(image2)

通常情况下,tf.variable_scope 和 tf.name_scope 配合,能画出非常漂亮的流程图,但是他们两个之间又有着细微的差别,那就是 name_scope 只能管住操作 Ops 的名字,而管不住变量 Variables 的名字,看下例:

with tf.variable_scope("foo"):
with tf.name_scope("bar"):
v = tf.get_variable("v", [1])
x = 1.0 + v
assert v.name == "foo/v:0"
assert x.op.name == "foo/bar/add"

参考资料:

1. https://www.tensorflow.org/how_tos/variable_scope/

TF Boys (TensorFlow Boys ) 养成记(三)的更多相关文章

  1. TF Boys (TensorFlow Boys ) 养成记(三): TensorFlow 变量共享

    上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题. 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生 ...

  2. TF Boys (TensorFlow Boys ) 养成记(一)

    本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...

  3. TF Boys (TensorFlow Boys ) 养成记(一):TensorFlow 基本操作

    本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于 ...

  4. TF Boys (TensorFlow Boys ) 养成记(四)

    前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 ...

  5. TF Boys (TensorFlow Boys ) 养成记(二)

    TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...

  6. TF Boys (TensorFlow Boys ) 养成记(二): TensorFlow 数据读取

    TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Vis ...

  7. TF Boys (TensorFlow Boys ) 养成记(四):TensorFlow 简易 CIFAR10 分类网络

    前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 ...

  8. TF Boys (TensorFlow Boys ) 养成记(六)

    圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train ...

  9. TF Boys (TensorFlow Boys ) 养成记(五)

    有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输 ...

随机推荐

  1. [转载]Altium规则详解及设置

    在Altium中进行PCB的设计时,经常会使用规则(Rule)来进行限定以确定线宽孔径等参数,此文将简要的介绍规则中的一些标量代表了什么. Electrical——电气规则.安全间距,线网连接等 Ro ...

  2. ADT bundle和Eclipse和Android Studio有什么区别?安卓开发该用哪个?

    这三个版本的出现有一定的历史的原因:1.最开始只有eclipse+独立的adt一种开发环境,但是由于eclipe作为一种通用的ide,带来的问题太多,经常出现eclipse的版本不兼容adt的情况,或 ...

  3. iOS9支付完成无法获取回调

    - (BOOL)application:(UIApplication *)app openURL:(NSURL *)url options:(NSDictionary<NSString *,id ...

  4. php中Closure::bind用法(手册记录)

    手册中 Closure::bind — 复制一个闭包,绑定指定的$this对象和类作用域. 具体参数可以看手册,这里记录下这个方法的实际用处. <?php trait MetaTrait { p ...

  5. codeforces 420B Online Meeting

    一道实现很蛋疼的题.必须静下理清思路,整理出各种情况.不然就会痛苦地陷入一大堆if..else里不能自拔. #pragma comment(linker, "/STACK:102400000 ...

  6. 拾遗:『Linux Capability』

    『Linux Capability』 For the purpose of performing permission checks, traditional UNIX implementations ...

  7. MongoDB介绍与windows下安装

    MongoDB是一个介于关系数据库和非关系数据库之间的产品,是非关系数据库当中功能最丰富,最像关系数据库的.他支持的数据结构非常松散,是类 似json的bjson格式,因此可以存储比较复杂的数据类型. ...

  8. java线程详解(二)

    1,线程安全 先看上一节程序,我们稍微改动一下: //线程安全演示 //火车站有16张票,需要从四个窗口卖出,如果按照上面的多线程实现,程序如下 class Ticket implements Run ...

  9. 用PhpStorm IDE创建GG App Engine PHP应用教程

    在上一篇教程里我们已经介绍了如何为PhpStorm搭建软件环境,那么今天就该是正式的开始创建App了: 3.创建首个Google App Engine PHP Application 现在我们就可以开 ...

  10. 6.5 为什么Android用Java不用c实现?

    C/C++过于底层,开发者要花很多的经历对C/C++的语言研究清楚,例如C/C++的内存机制,如果稍不注意,就会忘了开启或者释放.而Java的GC会自动处理这些,省去了很多的时间让开发者专注于自己的业 ...