[CareerCup] 3.4 Towers of Hanoi 汉诺塔
3.4 In the classic problem of the Towers of Hanoi, you have 3 towers and N disks of different sizes which can slide onto any tower. The puzzle starts with disks sorted in ascending order of size from top to bottom (i.e., each disk sits on top of an even larger one). You have the following constraints:
(1) Only one disk can be moved at a time.
(2) A disk is slid off the top of one tower onto the next tower.
(3) A disk can only be placed on top of a larger disk.
Write a program to move the disks from the first tower to the last using stacks.
经典的汉诺塔问题,记得当年文曲星流行的日子,什么汉诺塔啊,英雄坛说啊,华容道啊,都是文曲星上的经典游戏,当时还觉得汉诺塔蛮难玩的,大学里学数据结构的时候才发现原来用递归这么容易解决。那么我们来看看用递归如何实现:
aaarticlea/jpeg;base64,/9j/4AAQSkZJRgABAQEAYABgAAD/2wBDAAMCAgMCAgMDAwMEAwMEBQgFBQQEBQoHBwYIDAoMDAsKCwsNDhIQDQ4RDgsLEBYQERMUFRUVDA8XGBYUGBIUFRT/2wBDAQMEBAUEBQkFBQkUDQsNFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBQUFBT/wAARCADHAh0DAREAAhEBAxEB/8QAHQABAQEAAgMBAQAAAAAAAAAAAAcGAQIDBAUICf/EAFAQAQAABAIFBAsNBAcJAQAAAAABAgMGBAUHEReU0xIhNlcIFTEyQXN2tMLR0hMUGCJRVFZhdHWRk7I3VXGhIzM1Q2JygRYmNDhCR1Kxs1P/xAAUAQEAAAAAAAAAAAAAAAAAAAAA/8QAFBEBAAAAAAAAAAAAAAAAAAAAAP/aAAwDAQACEQMRAD8A/qmAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADrPHVJNH6gYzRnnWLzmGe++6savuGPjSp6/BLyZY6v5g2oAAAAAAAAAAAAAAAAAAAAMTZ+c4vH3jcuEr1Yz0MNV1UpY/wDTDlRBtgAAAAAAAAAAAAAAAAAAAATvQfceYXNbmdYjMa/u9WhnuPwtOb5KclaMskP9IAogAAAAAAAAAAAAAAAAAAAAAOtTvJv4RBPdD/e3L95TfolBRAAAAAAAAAAAAAAAAAAAAATyw+n13+O9KIKGAAAAAAAAAAAAAAAAAAAACUdjj0TuHylzPziYFXAAAAAAAAAAAAAAAAAAAAAB1qd5N/CIJ7of725fvKb9EoKIAAAAAAAAAAAAAAAAAAAACeWH0+u/x3pRBQwAAAAAAAAAAAAAAAAAAAASjsceidw+UuZ+cTAq4AAAAAAAAAAAAAAAAAAAAAOtTvJv4RBPdD/e3L95TfolBRAAAAAAAAAAAAAAAAAAAAATyw+n13+O9KIKGAAAAAAAAAAAAAAAAAAAACUdjj0TuHylzPziYFXAAAAAAAAAAAAAAAAAAAAAB1qd5N/CIJ7of725fvKb9EoKIAAAAAAAAAAAAAAAAAAAACeWH0+u/wAd6UQUMAAAAAAAAAAAAAAAAAAAAEo7HHoncPlLmfnEwKuAAAAAAAAAAAAAAAAAAADOaQb1w+j61cVnmJw9TFUqE1OT3GlHVNNNPPLJLCGv65oAzkdJ1wQjGEbCzLX9ro+sHWbSdcEZYw/2CzLnh86o+sGU0f3XdNuy5z75sHMYe+sbGtTh77o97yYQ+X6gazafn/0CzLeqPrB58j0p4jMLnwmSZjbeMyaviqU1WlUr1pJ5ZoQjCEYfF/iCgAAAAAAAAAAAAAAAAAAAnlh9Prv8d6UQUMAAAAAAAAAAAAAAAAAAAAEo7HHoncPlLmfnEwKuAAAAAAAAAAAAAAAAAAACadkV+yrH/a8H5zTBSwAAATq6/wBrdrfZqv65QUUAAAAAAAAAAAAAAAAAAE8sPp9d/jvSiChgAAAAAAAAAAAAAAAAAAAAlHY49E7h8pcz84mBVwAAAAAAAAAAAAAAAAAAATTsiv2VY/7Xg/OaYKWAAACdXX+1u1vs1X9coKKAAAAAAAAAAAAAAAAAACeWH0+u/wAd6UQUMAAAAAAAAAAAAAAAAAAAAEo7HHoncPlLmfnEwKuAAAAAAAAAAAAAAAAAACOZNcGky9/fmPyPHW3gctkxFShTpY7C1p6vxJoyxjGMs2rnjAHzdIej7TFfVrV8njcFoUIVatGpy44HEc3IqSz/APn/AIQaSOW6YtfNnVoavsWI9sDtbpj/AH1aG5Yj2wO1umP99WhuWI9sDtbpj/fVobliPbB8DNLD0wZjdWWZzHPrQlmwdKanCT3jiOfXGEdff/UD7/a3TH++rQ3HEe2D7GiG781vDIMynzqXDQzLLszxGW1Z8HLGWlUjSjCHKlhGMYwhHX4QbkAAAAAAAAAAAAAAAAE8sPp9d/jvSiChgAAAAAAAAAAAAAAAAAAAAlHY49E7h8pcz84mBVwAAAAAAAAAAAAAAAAAATfQR0Txn3hiv/tOCkAAAAAAAl+gX+zrz8qsx/XKCoAAAAAAAAAAAAAAAAAnlh9Prv8AHelEFDAAAAAAAAAAAAAAAAAAAABKOxx6J3D5S5n5xMCrgAAAAAAAAAAAAAAAAAAm+gnonjPvDFf/AGnBSAAAAAAAS/QL/Z15+VWY/rlBUAAAAAAAAAAAAAAAAATyw+n13+O9KIKGAAAAAAAAAAAAAAAAAAAACUdjj0TuHylzPziYFXAAAAAAAAAAAAAAAABKNNFPNszuew8my24syt2jj8dXkxNbLJ5ZZ6kstCaaEsYzSx5tcNYO+xTN+s+8N4o8MHoZN2POLyDCzYbA6SbuoUZp5qkZZcRR76aMYxj/AFfyxiD39imb9Z94bxR4YGxTN+s+8N4o8MDYpm/WfeG8UeGBsUzfrPvDeKPDA2KZv1n3hvFHhgbFM36z7w3ijwwNimb9Z94bxR4YPnZJ2OmIt6njJMBpHu7Dy4vFVMZWhLiKPxqs8dc039X4dQPUuixs9sWbKczpaQ7nzCEMbTknwuMr0o0qssYR1yzQhJCOrm+UFsoTRnoU5o88YywjH8AeQAAAAAAAAAAAAAAE8sPp9d/jvSiChgAAAAAAAAAAAAAAAAAAAAlHY49E7h8pcz84mBVwAAAAAAAAAAAAAAAATPSV+0rRn94YnzacFMAAAAAAAAABgdMX9h5b9vp/+pgbnDf8NS/yQ/8AQPKAAAAAAAAAAAAAACeWH0+u/wAd6UQUMAAAAAAAAAAAAAAAAAAAAEo7HHoncPlLmfnEwKuAAAAAAAAAAAAAADiaaEksYzRhCEOeMY+AGAxWn3R9gcTVw9e6cFTrUpoyTyRhPzRhHVGHegmukTT1o/xOkTRzWpXRg56dHH4iapNCE/xYRw88IRj8X5QUX4Q+jj6WYL8J/ZA+EPo4+lmC/Cf2QPhD6OPpZgvwn9kD4Q+jj6WYL8J/ZA+EPo4+lmC/Cf2QPhD6OPpZgvwn9kD4Q+jj6WYL8J/ZA+EPo4+lmC/Cf2QPhD6OPpZgvwn9kD4Q+jj6WYL8J/ZBidK+nrR/jsmy+WhdGDqRlx1OaOqE/NDVN/hBsqHZDaOZaFOEbrwUIwlh4J/k/wAoNNaWkS27798doM3w+aRw+r3WFHXrk19zXrhD5AaMAAAAAAAAAAAAAE8sPp9d/jvSiChgAAAAAAAAAAAAAAAAAAAAlHY49E7h8pcz84mBVwAAAAAAAAAAAAAAZfSlNGTRvc0ZYxhGGXV4wjDwfEiDmxMvwtSzclmnw1GaaOEpRjGNOEYx+JAH3Y5VgoxhGODw8Yw7kY0peb+QOe1mD+aUPy4eoDtZg/mlD8uHqA7WYP5pQ/Lh6gO1mD+aUPy4eoDtZg/mlD8uHqA7WYP5pQ/Lh6gO1mD+aUPy4eoDtZg/mlD8uHqA7WYP5pQ/Lh6gO1mD+aUPy4eoHEcrwU3dwlCP8aUvqBz2swfzSh+XD1AlloUpKHZJX5JTklpydpctjyZYaod9W8AK4AAAAAAAAAAAAACeWH0+u/x3pRBQwAAAAAAAAAAAAAAAAAAAASjsceidw+UuZ+cTAq4AAAAAAAAAAAAAAMtpT/Ztc/3dX/REHtWD0LyT7HS/RAH3wAAAAAAAAAAAASW1f+ZW/PuTLP1VgVoAAAAAAAAAAAAAE8sPp9d/jvSiChgAAAAAAAAAAAAAAAAAAAAlHY49E7h8pcz84mBVwAAAAAAAAAAAAAZS9r3xdoe9/e1r5zcXusYwj2qpST+5/wCblTQBO730q55n9nZ1luH0Y3fCvi8HVo0+VhqWrlTSxhD+8B7FsaW85yi3ctwVXRheEatDD06c2rDUu7CWEI/3gPp7bM26sLx3alxANtmbdWF47tS4gG2zNurC8d2pcQDbZm3VheO7UuIBtszbqwvHdqXEA22Zt1YXju1LiAbbM26sLx3alxANtmbdWF47tS4gG2zNurC8d2pcQDbZm3VheO7UuIBtszbqwvHdqXEA22Zt1YXju1LiAbbM26sLx3alxAYTI75uTL9Md0XLU0ZXb2vzHLcFhaMIYalyuXTjUjNr/pP8UAbuOm3Nof8AbC8d2pcQFNwWJmxeEpVpqNTDzTywmjSqw1TSfVH6wecAAHrZnjJsvy/E4mTDVcZPRpzVIYehCEalSMIa+TLCPhj3IAmcNNubRhCOy+8YfVHDUuIDnbZm3VheO7UuIBtszbqwvHdqXEA22Zt1YXju1LiAbbM26sLx3alxANtmbdWF47tS4gG2zNurC8d2pcQDbZm3VheO7UuIDJ2xpHz/ACi6M+x9XRjd8aONqcqnqw1LX3Yx/wD0+sGs22Zt1YXju1LiAbbM26sLx3alxANtmbdWF47tS4gG2zNurC8d2pcQDbZm3VheO7UuIBtszbqwvHdqXEA22Zt1YXju1LiAbbM26sLx3alxAa2yryxV3Uq8+JtrN7djTjqhLmtOSSM/8OTNEGnAAABgbo0n5hbmcVcDQsW5M5pyatWLy+hTmpTc3gjGeEf5A+TtszbqwvHdqXEA22Zt1YXju1LiAbbM26sLx3alxANtmbdWF47tS4gG2zNurC8d2pcQDbZm3VheO7UuIBDTZm2v9mF47tS4gMNohvu47KyHNsJj9GN2xq4nOcbjZPc8NSj/AEdWrGaX+87uqINztszbqwvHdqXEA22Zt1YXju1LiAbbM26sLx3alxANtmbdWF47tS4gG2zNurC8d2pcQDbZm3VheO7UuIBtszbqwvHdqXEA22Zt1YXju1LiA9vKdL2Z5nmeGwlTR3dWBkrVJZI4nE4elCnThGOrlTRhUjHVAFJAAAAAAAAAAAAAAABx3AdaNaniKcKlKpLUkj3JpI64R/1B3AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABj9Ld4zWJo/wA4zejRqYrGUqMfe2Eoy8qriKngkklhzzTR5+aHyAw+gG468MVmdv1amJq4WlLDFYSbGYeNCenJNq10tUe+1RjNHlf6auYFoAAAAAAAAAAAAAAAAAAABxNLy5Yy64w1w1a4d0H5Fo1M8yXPbsx+T5lcuNzLB3dUp8rGYurWwFLBQqU/dZeTH4sNUnL1Q8EQfrXCYqnjsLRxFGaE9GrJCpJNDwyxhrhEHmAAAAAAAAAAAAAAAAAAABgNJWNxWLzPJ7do4qrgqGZ8uFevh54yVZZYRhCMJZoc8sfjd0HkszRvirNz+rXkuLMcyyyNCNOnhMwrzVppYxjCPKjPGPPHmj4PCDdgAAAAAAAAAAAAAAAAAAAAy176PsBfc+UTY6rWpzZZjJMdh/cp4y6qssIwhGOqPPD40eaPMDrW0d4CremDuWFWrTxmGoe94U5I6pJ5dcY88NeruxBqwAAAAAAAAAAAAAAAAAAAcTQjNLGEI8mMYc0fkBH8r0EZxlmMz7/f/Ma2W5zmVbMcRgJsDQhL/SauVThNq16tUNWvu84Kzl+BpZZgMNg6EOTRw9OWlJD5JZYaofygD2AAAAAAAAAAAAAAAAAAAAZ+77Qp3VhafIxVTL8fQjysNjaUsJp6M3ywhHmj4OaIPBZ9m17c90r5hnOJz3MqsNU+LxEsKeuHyciX4sPB3IA04AAAAAAP/9k=" alt="" width="352" height="129" />
假如n = 1,直接将Disk 1移到Tower C即可
假如n = 2,需要三步:
1. 把Disk 1 从Tower A 移到 Tower B
2. 把Disk 2 从Tower A 移到 Tower C
3. 把Disk 1 从Tower B 移到 Tower C
假如n = 3,需要如下几步:
1. 我们首先把上面两层移到另一个位置,我们在n = 2时实现了,我们将其移到 Tower B
2. 把Disk 3 移到Tower C
3. 然后把上面两层移到Disk 3,方法跟n = 2时相同
假如n = 4,需要如下几步:
1. 把Disk 1, 2, 3 移到 Tower B,方法跟n = 3时相同
2. 把Disk 4 移到 Tower C
3. 把Disk 1, 2, 3 移到 Tower C
这时典型的递归方法,实现方法参见下面代码:
class Tower {
public:
Tower(int i) : _idx(i) {}
int index() { return _idx; }
void add(int d) {
if (!_disks.empty() && _disks.top() <= d) {
cout << "Error placing disk " << d << endl;
} else {
_disks.push(d);
}
}
void moveTopTo(Tower &t) {
int top = _disks.top(); _disks.pop();
t.add(top);
cout << "Move disk " << top << " from " << index() << " to " << t.index() << endl;
}
void moveDisks(int n, Tower &destination, Tower &buffer) {
if (n > ) {
moveDisks(n - , buffer, destination);
moveTopTo(destination);
buffer.moveDisks(n - , destination, *this);
}
}
private:
stack<int> _disks;
int _idx;
};
int main() {
int n = ;
vector<Tower> towers;
for (int i = ; i < ; ++i) {
Tower t(i);
towers.push_back(t);
}
for (int i = n - ; i >= ; --i) {
towers[].add(i);
}
towers[].moveDisks(n, towers[], towers[]);
return ;
}
[CareerCup] 3.4 Towers of Hanoi 汉诺塔的更多相关文章
- 理解 Hanoi 汉诺塔非递归算法
汉诺塔介绍: 汉诺塔(港台:河内塔)是根据一个传说形成的数学问题: 最早发明这个问题的人是法国数学家爱德华·卢卡斯. 传说越南河内某间寺院有三根银棒,上串 64 个金盘.寺院里的僧侣依照一个古老的预言 ...
- 使用函数的递归调用来解决Hanoi(汉诺)塔问题。
#include<stdio.h> void hanoi(int n, char x, char y, char z); void move(char x, char y); int ti ...
- Hanoi汉诺塔问题——递归与函数自调用算法
题目描述 Description 有N个圆盘,依半径大小(半径都不同),自下而上套在A柱上,每次只允许移动最上面一个盘子到另外的柱子上去(除A柱外,还有B柱和C柱,开始时这两个柱子上无盘子),但绝不允 ...
- 《hanoi(汉诺塔)问题》求解
//Hanoi(汉诺)塔问题.这是一个古典的数学问题,用递归方法求解.问题如下: /* 古代有一个梵塔,塔内有3个座A,B,C,开始时A座上有64个盘子,盘子大小不等,大的在下,小的在上. 有一个老和 ...
- HT for Web 3D游戏设计设计--汉诺塔(Towers of Hanoi)
在这里我们将构造一个基于HT for Web的HTML5+JavaScript来实现汉诺塔游戏. 汉诺塔的游戏规则及递归算法分析请参考http://en.wikipedia.org/wiki/Towe ...
- 汉诺塔-Hanoi
1. 问题来源: 汉诺塔(河内塔)问题是印度的一个古老的传说. 法国数学家爱德华·卢卡斯曾编写过一个印度的古老传说:在世界中心贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根宝石针.印度教的主神梵 ...
- 汉诺塔 Hanoi Tower
电影<猩球崛起>刚开始的时候,年轻的Caesar在玩一种很有意思的游戏,就是汉诺塔...... 汉诺塔源自一个古老的印度传说:在世界的中心贝拿勒斯的圣庙里,一块黄铜板上插着三支宝石针.印度 ...
- [js - 算法可视化] 汉诺塔(Hanoi)演示程序
前段时间偶然看到有个日本人很早之前写了js的多种排序程序,使用js+html实现的排序动画,效果非常好. 受此启发,我决定写几个js的算法动画,第一个就用汉诺塔. 演示地址:http://tut.ap ...
- 用递归方法解决汉诺塔问题(Recursion Hanoi Tower Python)
汉诺塔问题源于印度的一个古老传说:梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘.梵天命令婆罗门把圆盘按大小顺序重新摆放在另一根柱子上,并且规定小圆盘上不能放 ...
随机推荐
- javascript 自定义类型 属性,方法
<html> <head> <script type="text/javascript"> function member(name,gende ...
- [PL/SQL工具]绿色版PLSQL工具登录时提示初始化失败,无法锁定OCI.dll错误
问题现象:使用绿色版PL/SQL工具进行登录时报如下截图错误: 问题描述:初始化失败,无法锁定oci.dll 解决方法:在PLSQL的菜单栏里依次选择 工具->首选项,在OCI库(自动检测为空) ...
- MongoDB学习笔记——数据库操作
使用use数据库名称来创建数据库,如果该数据库已经存在则返回这个数据库 语句格式:use DATABASE_NAME >use mynewdb switched to db mynewdb 使用 ...
- 数据结构--栈的应用(表达式求值 nyoj 35)
题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=35 题目: 表达式求值 时间限制:3000 ms | 内存限制:65535 KB描述 AC ...
- windows 7系统搭建本地SVN服务器的过程
Subversion是优秀的版本控制工具,其具体的的优点和详细介绍,这里就不再多说. 首先来下载和搭建SVN服务器. 现在Subversion已经迁移到apache网站上了,下载地址: http:// ...
- Oracle Jdbc demo
两种方式: thin是一种瘦客户端的连接方式,即采用这种连接方式不需要安装oracle客户端,只要求classpath中包含jdbc驱动的jar包就行.thin就是纯粹用Java写的ORACLE数据库 ...
- 技巧:利用 Workflow 显示附近的免费 Wi-Fi
得益于 Workflow 自 1.5.3 版本起更新的 Get Content of URL 动作,该 App 的潜力得到了极大的提升.本文分享一种有趣的用法,搜寻附近的免费 Wi-Fi 并择一显示在 ...
- web工程 所需是jar包总结
commons-beanutils-1.8.3.jar : BeanUtils主要提供了对于JavaBean进行各种操作,需要Commons -Collections包和Commons -loggin ...
- VMware + OpenStack: 从 Plugin 到 VIO (VMware Integrated OpenStack)的演进
VMware 做为实际上的企业虚拟化领导者,对 OpenStack 的态度一直在变化.一开始,VMware 表达出与 OpenStack 的竞争态度.随着 OpenStack 的逐步壮大并且一步一步进 ...
- elastic search查询命令集合
Technorati 标签: elastic search,query,commands 基本查询:最简单的查询方式 query:{"term":{"title" ...