hiho42 : 骨牌覆盖问题·二
描述
上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?
所以我们的题目是:对于3xN的棋盘,使用1x2的骨牌去覆盖一共有多少种不同的覆盖方法呢?
首先我们可以肯定,奇数长度一定是没有办法覆盖的;对于偶数长度,比如2,4,我们有下面几种覆盖方式:

输入
第1行:1个整数N。表示棋盘长度。1≤N≤100,000,000
输出
第1行:1个整数,表示覆盖方案数 MOD 12357
样例输入
62247088
样例输出
4037
提示:3xN骨牌覆盖
在2xN的骨牌覆盖问题中,我们有递推式子 (0,1)xM^n=(f[n-1],f[n])。
我们考虑能否在3xN的情况下找到同样的式子。
但在实际的推导过程可以发现,对于3xN的覆盖,对应的f数值公式比2xN复杂太多。我们需要换个角度来思考推导公式。
在我们放置骨牌的过程中,一定是放好一行之后再放置下一行。根据摆放的方式,可能会产生很多种不同的形状,而这些形状之间是否具有某些递推关系呢?
如果他们存在一定的递推关系,则我们可以根据第i行的方案数来推导第i+1行的方案数。这样一行一行推导,直到第N行时不就得到了我们要求的方案数了么?
那么来研究一下是否存在这样的推导公式吧
假设我们已经放好了一些骨牌,对于当前最后一列(第i列)骨牌,可能有8种情况:
对于上面这8种状态,我们用数字来标记它们。以有放置骨牌的格子为1,未放置为0,转化为2进制数
以最下面一行作为1,则有:
接下来考虑如何放置骨牌,我们先将棋盘旋转一下。假设我们正在放置第i行的骨牌,那么会有下面3种方式:
灰色表示已经有的骨牌,绿色表示新放置的骨牌。
每一种放置方法解释如下,假设当第i行的状态为x,第i-1行的状态为y:
- 第i行不放置,则前一行必须有放置的骨牌。x对应二进制位为0,y对应二进制位为1。
- 第i行竖放骨牌,则前一行必须为空。x对应二进制位为1,y对应二进制位为0。
- 第i行横向骨牌,则前一行必须两个位置均有骨牌,否则会产生空位。x对应二进制位为1,y对应二进制位为1。
举个例子:
对于第i行状态1,我们在第i+1行竖放两块骨牌之后便能到达状态6。
但是在这之中需要注意会出现下面这种情况:
这种情况看似是从状态1变成了状态0,其实是不对的。它不满足我们约定的放置方法,本质是第i行的状态1变成了第i行的状态7,而实际上我们应该放置的是第i+1行。
所以在枚举递推关系的时候一定要注意。
通过枚举8种状态到8种状态的转移,我们可以得到一个8x8的矩阵M(空白的地方均为0):
m[i][j]表示从状态i变成状态j的方案数。
现在我们有了M矩阵,接下来考虑边界情况。
在2xN的骨牌覆盖中,有(0, 1)作为初始向量A,那么在3xN中初始向量A是如何呢?
让我们先想想A向量所代表的含义。M矩阵表示状态到状态的转移,则A向量所表示的应该就是第0行各状态的方案数。
同理,对于A * M^n所求出的结果则应该表示为第n行各种状态的方案数。
那么A向量应该是多少呢?很显然,第0行在我们递推的过程中必须看作状态7才合理。故A向量表示为:
{0, 0, 0, 0, 0, 0, 0, 1}
而对于我们寻求的答案,自然也是第n行放置为状态7的方案数了。
#include <iostream> using namespace std; typedef long long ll; const int M = 12357;
struct Matrix
{
int m[8][8];
Matrix()
{ for(int i=0; i<8; i++)
{
for (int j=0; j<8; j++)
{
m[i][j]=0;
}
}
for(int i=0; i<8; i++)
{
m[i][7-i]=1;
}
m[3][7]=1;
m[7][3]=1;
m[6][7]=1;
m[7][6]=1;
}
Matrix operator*(Matrix& a)
{
Matrix res; for (int i=0; i<8; i++)
{
for (int j=0; j<8; j++)
{
res.m[i][j]=0;
for (int k=0; k<8; k++)
{
res.m[i][j]=(res.m[i][j] + (ll)m[i][k]*a.m[k][j])%M;
}
}
}
return res;
}
}; Matrix pow(Matrix m, int n)
{
Matrix res;
if(1==n)
return m;
res = pow(m, n/2);
if(n%2==1)
res = res*res*m;
else
res = res*res;
return res;
} int main()
{
int N;
cin>>N; Matrix mat; mat = pow(mat, N); cout<<mat.m[7][7]; return 0;
}
hiho42 : 骨牌覆盖问题·二的更多相关文章
- hiho #1151 : 骨牌覆盖问题·二 (递推,数论)
#1151 : 骨牌覆盖问题·二 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题? ...
- hihoCode #1151 : 骨牌覆盖问题·二
#1151 : 骨牌覆盖问题·二 Time Limit:10000ms Case Time Limit:1000ms Memory Limit:256MB 描述 上一周我们研究了2xN的骨牌问题,这一 ...
- [hihoCoder] 骨牌覆盖问题·二
时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 上一周我们研究了2xN的骨牌问题,这一周我们不妨加大一下难度,研究一下3xN的骨牌问题?所以我们的题目是:对于3xN的棋盘 ...
- hihoCoder #1151 : 骨牌覆盖问题·二 (矩阵快速幂,DP)
题意:给一个3*n的矩阵,要求用1*2的骨牌来填满,有多少种方案? 思路: 官网题解用的仍然是矩阵快速幂的方式.复杂度O(logn*83). 这样做需要构造一个23*23的矩阵,这个矩阵自乘n-1次, ...
- 骨牌覆盖问题总结!hihoCoder/ NYOJ-1273宣传墙1151
本想着做一下第九届河南省省赛题,结果被这个类似骨牌覆盖的题卡住了,队友然我去hihoCoder上老老实实把骨牌覆盖一.二.三做完,这题就没什么问题了.虽然很不情愿,但还是去见识了一下. 骨牌覆盖问题 ...
- hihocoder第42周 3*N骨牌覆盖(状态dp+矩阵快速幂)
http://hihocoder.com/contest/hiho42/problem/1 给定一个n,问我们3*n的矩阵有多少种覆盖的方法 第41周做的骨牌覆盖是2*n的,状态转移方程是dp[i] ...
- 随便玩玩系列之一:SPOJ-RNG+51nod 算法马拉松17F+51nod 1034 骨牌覆盖v3
先说说前面的SPOJ-RNG吧,题意就是给n个数,x1,x2,...,xn 每次可以生成[-x1,x1]范围的浮点数,把n次这种操作生成的数之和加起来,为s,求s在[A,B]内的概率 连续形的概率 假 ...
- hiho #1143 : 骨牌覆盖问题·一 (运用快速幂矩阵)
#1143 : 骨牌覆盖问题·一 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然 ...
- hiho41 : 骨牌覆盖问题·一
原问题:骨牌覆盖问题 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题:我们有一个2xN的长条形棋盘,然后用1x2的 ...
随机推荐
- 13、在 uwp应用中,给图片添加高斯模糊滤镜效果(一)
如果在应用中,如果想要给app 添加模糊滤镜,可能第一想到的是第三方类库,比如 Win2d.lumia Imaging SDK .WriteableBitmapEx,不可否认,这些类库功能强大,效果也 ...
- 关于PHP数组转字符串详细介绍
随着时代的发展,我们的开发技术也随着更新,对于PHP还是比较常用的,于是我研究了一下PHP数组转字符串,在这里拿出来和大家分享一下,希望对大家有用. 经常需要使用PHP处理字符string,PHP内置 ...
- C与C++的细微区别——省略形式参数名
转自:http://www.cppblog.com/ownwaterloo/archive/2009/04/26/omit_parameter_name.html 一.C与C++的细微区别 在函数声明 ...
- Action类为何要 extends ActionSupport
我做的时候,我的action是继承ActionSupport的 Struts 2的Action无须实现任何接口或继承任何类型,普通的POJO类就可以用做Action类,但是,我们为了方便实现Actio ...
- HDU 4348 To the moon 可持久化线段树
To the moon Problem Description BackgroundTo The Moon is a independent game released in November 201 ...
- hdu 4751(dfs染色)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4751 思路:构建新图,对于那些两点连双向边的,忽略,然后其余的都连双向边,于是在新图中,连边的点是能不 ...
- 关于flume中的几个疑惑
文章发自http://www.cnblogs.com/hark0623/p/4205756.html 转载请注明 flume越用越有一些疑惑,这个月中按计划是要阅读flume源码的,我希望能解决我的 ...
- hdu 1269 迷宫城堡 强连通分量
迷宫城堡 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submis ...
- HeapByteBuffer和DirectByteBuffer以及回收DirectByteBuffer
由于HeapByteBuffer和DirectByteBuffer类都是default类型的,所以你无法字节访问到,你只能通过ByteBuffer间接访问到它,因为JVM不想让你访问到它. 分配Hea ...
- Spring的类型转换器
spring有2种类型转换器,一种是propertyEditor,一种是Converter. 第一种属性编辑器用法见Spring的属性编辑器的章节.如果2种转换器都适用,那么究竟会适用哪种呢?Spri ...