BZOJ1185 : [HNOI2007]最小矩形覆盖
求出凸包后,矩形的一条边一定与凸包的某条边重合。
枚举每条边,求出离它最远的点和离它最左最右的点,因为那三个点是单调变化的,所以复杂度为$O(n)$。
注意精度。
#include<cstdio>
#include<algorithm>
#include<cmath>
#define N 50010
using namespace std;
typedef double D;
struct P{D x,y;P(){}P(D _x,D _y){x=_x,y=_y;}}p[N],pp[N],hull[N],pivot,A,B,C,rect[8];
int n,i,j,l,r,k;
D w,h,ans=1e20,tmp,len;
bool del[N];
inline int zero(D x){return fabs(x)<1e-4;}
inline int sig(D x){if(fabs(x)<1e-8)return 0;return x>0?1:-1;}
inline D cross(P A,P B,P C){return(B.x-A.x)*(C.y-A.y)-(B.y-A.y)*(C.x-A.x);}
inline D distsqr(P A,P B){return(A.x-B.x)*(A.x-B.x)+(A.y-B.y)*(A.y-B.y);}
inline bool cmp(P a,P b){
D t=cross(pivot,a,b);
return sig(t)==1||sig(t)==0&&sig(distsqr(pivot,a)-distsqr(pivot,b))==-1;
}
inline void convexhull(int n,P stck[],int&m){
int i,k,top;
for(i=0;i<n;i++)pp[i]=p[i];
for(k=0,i=1;i<n;i++)if(pp[i].y<pp[k].y||(pp[i].y==pp[k].y&&pp[i].x<pp[k].x))k=i;
pivot=pp[k];pp[k]=pp[0];pp[0]=pivot;
sort(pp+1,pp+n,cmp);
stck[0]=pp[0];stck[1]=pp[1];
for(top=1,i=2;i<n;i++){
while(top&&sig(cross(pp[i],stck[top],stck[top-1]))>=0)--top;
stck[++top]=pp[i];
}
m=top+1;
}
inline D area(P A,P B,P C){return fabs(cross(A,B,C));}
inline P vertical(P A,P B){return P(A.x-B.y+A.y,A.y+B.x-A.x);}
int main(){
scanf("%d",&n);
for(i=0;i<n;i++)scanf("%lf%lf",&p[i].x,&p[i].y);
convexhull(n,hull,n);
for(i=1;i<n;i++)if(zero(hull[i].x-hull[i-1].x)&&zero(hull[i].y-hull[i-1].y))del[i]=1;
for(k=i=0;i<n;i++)if(!del[i])hull[k++]=hull[i];
for(hull[n=k]=hull[i=0];i<n;i++){
A=hull[i],B=hull[i+1],C=vertical(A,B);
while(sig(area(A,B,hull[j])-area(A,B,hull[j+1]))<1)j=(j+1)%n;
while(sig(cross(A,C,hull[l])-cross(A,C,hull[l+1]))<1)l=(l+1)%n;
while(sig(cross(A,C,hull[r])-cross(A,C,hull[r+1]))>-1)r=(r+1)%n;
len=sqrt(distsqr(A,B));
h=area(A,B,hull[j])/len;
w=(cross(A,C,hull[l])-cross(A,C,hull[r]))/len;
if(sig(h*w-ans)==-1){
ans=h*w;
tmp=area(A,B,hull[l])/len/len;
rect[0]=P(hull[l].x+tmp*(A.x-C.x),hull[l].y+tmp*(A.y-C.y));
tmp=h/len;
rect[3]=P(rect[0].x+tmp*(C.x-A.x),rect[0].y+tmp*(C.y-A.y));
tmp=w/len;
rect[1]=P(rect[0].x+tmp*(B.x-A.x),rect[0].y+tmp*(B.y-A.y));
rect[2]=P(rect[3].x+tmp*(B.x-A.x),rect[3].y+tmp*(B.y-A.y));
}
}
for(i=0;i<4;i++)rect[i+4]=rect[i];
for(j=0,i=1;i<4;i++)if(sig(rect[i].y-rect[j].y)==-1||sig(rect[i].y-rect[j].y)==0&&sig(rect[i].x-rect[j].x)==-1)j=i;
printf("%.0f.00000\n",ans);
for(i=0;i<4;i++)printf("%.0f.00000 %.0f.00000\n",rect[j+i].x,rect[j+i].y);
return 0;
}
BZOJ1185 : [HNOI2007]最小矩形覆盖的更多相关文章
- BZOJ1185[HNOI2007] 最小矩形覆盖(旋转卡壳)
BZOJ1185[HNOI2007] 最小矩形覆盖 题面 给定一些点的坐标,要求求能够覆盖所有点的最小面积的矩形,输出所求矩形的面积和四个顶点的坐标 分析 首先可以先求凸包,因为覆盖了凸包上的顶点,凸 ...
- bzoj1185 [HNOI2007]最小矩形覆盖 旋转卡壳求凸包
[HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 2081 Solved: 920 ...
- BZOJ1185 [HNOI2007]最小矩形覆盖 【旋转卡壳】
题目链接 BZOJ1185 题解 最小矩形一定有一条边在凸包上,枚举这条边,然后旋转卡壳维护另外三个端点即可 计算几何细节极多 维护另外三个端点尽量不在这条边上,意味着左端点尽量靠后,右端点尽量靠前, ...
- 2018.10.18 bzoj1185: [HNOI2007]最小矩形覆盖(旋转卡壳)
传送门 不难看出最后的矩形一定有一条边与凸包某条边重合. 因此先求出凸包,然后旋转卡壳求出当前最小矩形面积更新答案. 代码: #include<bits/stdc++.h> #define ...
- [BZOJ1185][HNOI2007]最小矩形覆盖-[凸包+旋转卡壳]
Description 传送门 Solution 感性理解一下,最小矩形一定是由一条边和凸包上的边重合的. 然后它就是模板题了..然而真的好难调,小于大于动不动就打错. Code #include&l ...
- BZOJ1185 HNOI2007 最小矩形覆盖 凸包、旋转卡壳
传送门 首先,肯定只有凸包上的点会限制这个矩形,所以建立凸包. 然后可以知道,矩形上一定有一条边与凸包上的边重合,否则可以转一下使得它重合,答案会更小. 于是沿着凸包枚举这一条边,通过旋转卡壳找到离这 ...
- bzoj千题计划209:bzoj1185: [HNOI2007]最小矩形覆盖
http://www.lydsy.com/JudgeOnline/problem.php?id=1185 题解去看它 http://www.cnblogs.com/TheRoadToTheGold/p ...
- 【BZOJ1185】[HNOI2007]最小矩形覆盖(凸包,旋转卡壳)
[BZOJ1185][HNOI2007]最小矩形覆盖(凸包,旋转卡壳) 题面 BZOJ 洛谷 题解 最小的矩形一定存在一条边在凸包上,那么枚举这条边,我们还差三个点,即距离当前边的最远点,以及做这条边 ...
- 【旋转卡壳+凸包】BZOJ1185:[HNOI2007]最小矩形覆盖
1185: [HNOI2007]最小矩形覆盖 Time Limit: 10 Sec Memory Limit: 162 MBSec Special JudgeSubmit: 1945 Solve ...
随机推荐
- vimcommandfilepatchcmdfold VIM技巧之分隔窗口 一级精华
VIM技巧之分隔窗口 分类: 技术2010-07-08 09:57 754人阅读 评论(1) 收藏 举报 同时显示两个不同的文件, 或者同时查看同一个文件的两个不同位置, 或者是同步显示两个文件的 ...
- BNUOJ 1038 Flowers
春天到了,师大的园丁们又开始忙碌起来了. 京师广场上有一块空地,边界围成了一个多边形,内部被划分成一格一格的.园丁们想在这个多边形内的每一格内种植一些花. 现在请你帮忙计算一下一共最多可以种多少花. ...
- django-cms 代码研究(七)杂七杂八
实体关系图 核心对象: cms_page/cms_placeholder/cms_cmsplugin. page模型类继承关系图 CMSPlugin&Placeholder模型类继承关系图 = ...
- 用chrome模拟微信浏览器访问需要OAuth2.0网页授权的页面
现在很流行微信网页小游戏,用html5制作的小游戏移过来,可以放到微信浏览器中打开,关键是可以做成微信分享朋友圈的形式,大大提高游戏的传播,增强好友的游戏互动. 微信浏览器中打开网页游戏效果还不错,对 ...
- LLVM,Clang
在使用xcode时常常会遇到这2个概念,今天总结一下. wiki中关于llvm的描述: LLVM提供了完整編譯系統的中間層,它會將中間語言(IF, Intermediate form)從編譯器取出與最 ...
- MongoDB副本集学习(一):概述和环境搭建
MongoDB副本集概述 以下图片摘自MongoDB官方文档:http://docs.mongodb.org/manual/core/replication-introduction/ Primary ...
- FZU 2148 moon game (计算几何判断凸包)
Moon Game Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit St ...
- unsatisfied类型的异常
一般为libs包下arm64-v8a,armeabi,armeabi-v7a,mips,mips64,x86,x86_64等文件夹下的.so文件丢失. 一般情况,armeabi下的so文件需要拷贝一份 ...
- Hibernate核心思想—ORM机制(一)
转:http://blog.csdn.net/wanghuan203/article/details/7566518 hibernate是一个采用ORM(Object/Relation Mapping ...
- mysql 指定端口
mysql -P3307 -uemove -h180. -p #-P是指定端口